Isolation and Characterization of an AGAMOUS-Like Gene from Magnolia wufengensis (Magnoliaceae)

[1]  Zhen Zhang,et al.  Isolation and Characterization of an AGAMOUS Homologue PmAG from the Japanese Apricot (Prunus mume Sieb. et Zucc.) , 2011, Plant Molecular Biology Reporter.

[2]  S. Singer,et al.  Petunia AGAMOUS Enhancer-Derived Chimeric Promoters Specify a Carpel-, Stamen-, and Petal-Specific Expression Pattern Sufficient for Engineering Male and Female Sterility in Tobacco , 2011, Plant Molecular Biology Reporter.

[3]  J. Leebens-Mack,et al.  Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica) , 2010, EvoDevo.

[4]  Wen-Ping Hsieh,et al.  C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. , 2010, Plant & cell physiology.

[5]  Jisen Shi,et al.  A B Functional Gene Cloned from Lily Encodes an Ortholog of Arabidopsis PISTILLATA (PI) , 2010, Plant Molecular Biology Reporter.

[6]  R. McQuinn,et al.  Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development , 2010, Journal of experimental botany.

[7]  V. Irish The flowering of Arabidopsis flower development. , 2010, The Plant journal : for cell and molecular biology.

[8]  J. Liao,et al.  Isolation and Characterization of Three MADS-box Genes from Alpinia hainanensis (Zingiberaceae) , 2010, Plant Molecular Biology Reporter.

[9]  P. M. Pijut,et al.  Cloning and Characterization of Prunus serotina AGAMOUS, a Putative Flower Homeotic Gene , 2010, Plant Molecular Biology Reporter.

[10]  A. Chalfun-Júnior,et al.  In Silico and Quantitative Analyses of MADS-Box Genes in Coffea arabica , 2010, Plant Molecular Biology Reporter.

[11]  P. M. Pijut,et al.  Isolation and Characterization of an AGAMOUS Homolog from Fraxinus pennsylvanica , 2010, Plant Molecular Biology Reporter.

[12]  Naomi S. Altman,et al.  Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae) , 2009, Proceedings of the National Academy of Sciences.

[13]  Ying Wang,et al.  NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development , 2009, Journal of experimental botany.

[14]  J. Doyle,et al.  Reconstructing the ancestral angiosperm flower and its initial specializations. , 2009, American journal of botany.

[15]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[16]  K. Chong,et al.  Two AGAMOUS‐like MADS‐box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions , 2007, Evolution & development.

[17]  J. Cairney,et al.  A simple and efficient method for isolating RNA from pine trees , 1993, Plant Molecular Biology Reporter.

[18]  James B. Hicks,et al.  A plant DNA minipreparation: Version II , 1983, Plant Molecular Biology Reporter.

[19]  Liu Xin,et al.  A new variety of Magnolia(Magnoliaceae) from Hubei,China , 2006 .

[20]  Takahiro Yamaguchi,et al.  Function and Diversification of MADS-Box Genes in Rice , 2006, TheScientificWorldJournal.

[21]  Liu Xin,et al.  A new species of Magnolia(Magnoliaceae) from Hubei,China , 2006 .

[22]  Clinton J. Whipple,et al.  Genetics of Grass Flower Development , 2006 .

[23]  Z. Schwarz‐Sommer,et al.  Flower development: the antirrhinum perspective , 2006 .

[24]  T. Teeri,et al.  Floral developmental genetics of Gerbera (Asteraceae) , 2006 .

[25]  Hong Ma,et al.  Beyond the ABC‐Model: Regulation of Floral Homeotic Genes , 2006 .

[26]  J. Fletcher,et al.  Molecular mechanisms of flower development: an armchair guide , 2005, Nature Reviews Genetics.

[27]  D. Soltis,et al.  Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. , 2005, The Plant journal : for cell and molecular biology.

[28]  S. Matsumoto,et al.  Ectopic expression of the rose AGAMOUS-like MADS-box genes 'MASAKO C1 and D1' causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia , 2004 .

[29]  E. Kramer,et al.  Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. , 2004, Genetics.

[30]  G. Theissen,et al.  Development of floral organ identity: stories from the MADS house. , 2001, Current opinion in plant biology.

[31]  G. Ditta,et al.  B and C floral organ identity functions require SEPALLATA MADS-box genes , 2000, Nature.

[32]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[33]  S. Briggs,et al.  Diversification of C-Function Activity in Maize Flower Development , 1996, Science.

[34]  Elliot M. Meyerowitz,et al.  The ABCs of floral homeotic genes , 1994, Cell.

[35]  Hong Ma,et al.  Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity , 1992, Cell.

[36]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[37]  J. Bowman,et al.  Genetic interactions among floral homeotic genes of Arabidopsis. , 1991, Development.

[38]  J. Bowman,et al.  Early flower development in Arabidopsis. , 1990, The Plant cell.

[39]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .