Review of ISOL target–ion-source systems

Abstract Any review of target–ion-source systems (TISS) is necessarily a variation of the ISOL-theme “efficient, fast, selective”. In the first part, more than 30 years of TISS development are examined in view of these key characteristics. By looking at the lines of development that were successful, at the lines that were abandoned (partly for good, partly for less good reasons), the lines with the most promising perspectives emerge. The second part deals with on-line chemistry in the TISS and its possibly double benefits: enhanced selectivity or increased separation speed, or both in favourable cases, as the relatively new sulfide chemistry. For the group-IVa-elements germanium and tin, the separation as sulfide-ions does not only suppress strongly the contamination by the neighbouring elements. It also reduces the effusion part of the release by orders of magnitude to the level of the intrinsic delay caused by molecular flow. The homologue chemistry is likely to work for silicon, but not for lead. While selectivity requires that both the formed molecules and molecular ions are thermally stable, a gain in speed requires only sufficient stability of the molecule: e.g. antimony, which hardly forms sulfide ions, also migrates orders of magnitude faster in the presence of sulphur vapour.

[1]  H. Koivisto,et al.  Metal ion beams from an ECR ion source using volatile compounds , 1994 .

[2]  J. Ärje,et al.  Metal ions from the volatile compounds method for the production of metal ion beams , 1998 .

[3]  E. Roeckl,et al.  Short-lived isotopes of alkali and alkaline-earth elements studied by on-line isotope separator techniques , 1975 .

[4]  I. Chavet,et al.  EXPERIMENTAL STUDY OF AN ION SOURCE FOR ELECTROMAGNETIC ISOTOPE SEPARATION WITH A VIEW TO HIGH EFFICIENCY OPERATION. , 1967 .

[5]  P. Dendooven The development and status of the IGISOL technique , 1997 .

[6]  Piet Van Duppen,et al.  Laser ion sources for on-line isotope separators , 1997 .

[7]  R. Kirchner,et al.  The ion sources for the GSI on-line separator , 1981 .

[8]  A. Latuszyński,et al.  Studies of the ion source with surface-volume ionization , 1975 .

[9]  R. Kirchner Release studies of elementary and metal-fluoride ions at the GSI on-line mass separator , 1997 .

[10]  V. Fedosseev,et al.  Beta decay of the new isotope $^{101}$Sn , 1994 .

[11]  M. Huyse,et al.  High efficiency ion sources for on‐line mass separators: A brief review (invited) , 1992 .

[12]  E. Roeckl,et al.  Investigation of gaseous discharge ion sources for isotope separation on-line , 1976 .

[13]  P. Johnson,et al.  A high temperature ion source for isotope separators , 1973 .

[14]  V. Obukhov,et al.  Thermoionization efficiency in the ion source cavity , 1977 .

[15]  Marc Huyse,et al.  Ionization in a hot cavity , 1983 .

[16]  H. Grawe,et al.  The production yields of radioactive ion-beams from fluorinated targets at the ISOLDE on-line mass separator , 1992 .

[17]  R. Kirchner Progress in ion source development for on-line separators , 1981 .

[18]  H. Kluge,et al.  Chemically selective laser ion-source for the CERN-ISOLDE on-line mass separator facility , 1993 .

[19]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[20]  Marc Huyse,et al.  An electron cyclotron resonance ion source for efficient production of radioactive ion beams , 1991 .

[21]  R. Kirchner Ion sources for radioactive beams and related problems (Review) (invited) , 1996 .

[22]  M. Oshima,et al.  Measurement of hold-up times in a thermal ion source for metallic and monoxide ions of lanthanum and cerium , 1992 .

[23]  Y. Kawase,et al.  Fluorination method for the surface ionization of Sr and Ba with a helium-jet type ISOL , 1992 .

[24]  R. Kirchner On the thermoionization in hot cavities , 1990 .

[25]  D. Schardt,et al.  Intense beams of mass-separated, neutron-deficient indium, tin, thallium and lead isotopes , 1985 .

[26]  S. Franchoo,et al.  Beams of short lived nuclei produced by selective laser ionization in a gas cell , 1996 .

[27]  G. J. Beyer,et al.  A new method for rare-earth isotope separation , 1971 .

[28]  P. McNeely,et al.  Target and ion source development at the TISOL facility at TRIUMF , 1990 .

[29]  M. Weber,et al.  Verflüchtigung von Spaltprodukten aus festem Uran(IV)-fluorid und anderen Fluoriden , 1973 .

[30]  H. L. Ravn,et al.  Ion source with combined cathode and transfer line heating , 1992 .

[31]  R. Kirchner,et al.  Ion source development for the on-line isotope separator at GSI , 1992 .

[32]  J. M. Nitschke,et al.  An electron-beam-generated-plasma ion source for on-line isotope separation , 1985 .

[33]  J. Obert,et al.  Selective on-line separation of new Ta, Zr and Sr isotopes , 1982 .

[34]  Y. Kawarasaki,et al.  Feedback circuit of digital spectrum stabilizer , 1971 .

[35]  H. Ravn Status and future development of ion sources for on-line mass separators , 1992 .

[36]  O. Jonsson,et al.  New production systems at ISOLDE , 1992 .

[37]  A. Piotrowski,et al.  Thermal ionization in a hot cavity , 1978 .

[38]  J. Hardy,et al.  The Chalk River helium-jet ion source , 1987 .

[39]  H. Zwicky,et al.  Production of molecular ions in the integrated target/ion-source of an isotope-separation-on-line system , 1980 .

[40]  J. Ärje,et al.  Ion guide method for on-line isotope separation , 1987 .

[41]  O. Jonsson,et al.  Methods for Production of Intense Beams of Unstable Nuclei: New Developments at ISOLDE , 1986 .

[42]  H. Ravn,et al.  Target Techniques for the isolde on-line isotope separator , 1975 .

[43]  J. Obert,et al.  Target ion source systems at the Orsay isocele 2 separator , 1981 .

[44]  O. Klepper,et al.  An ion source with storage capability for bunched beam release and controlled chemical separation , 1986 .