The Negele–Vautherin density-matrix expansion applied to the Gogny force
暂无分享,去创建一个
[1] Markus Kortelainen,et al. Local nuclear energy density functional at next-to-next-to-next-to-leading order , 2008 .
[2] J. Dobaczewski,et al. Erratum: Time-odd components in the mean field of rotating superdeformed nuclei [Phys. Rev. C 52, 1827 (1995)] , 1997 .
[3] J. F. Berger,et al. Time-dependent quantum collective dynamics applied to nuclear fission , 1991 .
[4] J. Dechargé,et al. Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .
[5] D. Brink,et al. Time-dependent hartree-fock theory with Skyrme's interaction , 1975 .
[6] G. Bertsch,et al. Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction , 2009, 0910.2940.
[7] Dobaczewski,et al. Time-odd components in the mean field of rotating superdeformed nuclei. , 1995, Physical review. C, Nuclear physics.
[8] D. Vretenar,et al. Relativistic nuclear energy density functional constrained by low-energy QCD , 2005, nucl-th/0509040.
[9] M. Kortelainen,et al. Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.
[10] T. Lesinski,et al. Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei , 2009, 0909.3782.
[11] Olivier Bokanowski,et al. LOCAL APPROXIMATION FOR THE HARTREE–FOCK EXCHANGE POTENTIAL: A DEFORMATION APPROACH , 1999 .
[12] B. Barrett. Effective Interactions and Operators in Nuclei , 1975 .
[13] J. Dobaczewski,et al. Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations , 2008, 0801.0924.
[14] J. Negele. Density dependent interactions , 1975 .
[15] V. B. Soubbotin,et al. Quasilocal density functional theory and its application within the extended Thomas-Fermi approximation , 2003 .
[16] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[17] S. Goriely,et al. Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0 neutron-matter gap , 2008, 0809.0447.
[18] T. Lesinski,et al. The tensor part of the Skyrme energy density functional. I. Spherical nuclei , 2007, 0704.0731.
[19] John W. Negele,et al. Density-matrix expansion for an effective nuclear Hamiltonian , 1972 .
[20] C. Titin-Schnaider,et al. Coulomb exchange contribution in nuclear Hartree-Fock calculations , 1974 .
[21] J. Dobaczewski,et al. Local density approximation for proton-neutron pairing correlations: Formalism , 2004 .
[22] J. C. Slater. A Simplification of the Hartree-Fock Method , 1951 .
[23] S. K. Bogner,et al. Density matrix expansion for low-momentum interactions , 2008, 0811.4198.
[24] B. M. Fulk. MATH , 1992 .
[25] Paul-Henri Heenen,et al. Self-consistent mean-field models for nuclear structure , 2003 .
[26] V. B. Soubbotin,et al. Extended Thomas–Fermi approximation to the one-body density matrix , 1999 .