The Negele–Vautherin density-matrix expansion applied to the Gogny force

We use the Negele–Vautherin density-matrix expansion to derive a quasi-local density functional for the description of systems of fermions interacting with short-range interactions composed of arbitrary finite-range central, spin–orbit and tensor components. Terms that are absent in the original Negele–Vautherin approach owing to the angle averaging of the density matrix are fixed by employing a gauge invariance condition. We obtain the Kohn–Sham interaction energies in all spin–isospin channels, including the exchange terms, expressed as functions of the local densities and their derivatives up to second (next to leading) order. We illustrate the method by determining the coupling constants of the Skyrme functional or Skyrme force that correspond to the finite-range Gogny central force. The resulting self-consistent solutions reproduce the Gogny-force binding energies and radii within the precision of 1–2%.

[1]  Markus Kortelainen,et al.  Local nuclear energy density functional at next-to-next-to-next-to-leading order , 2008 .

[2]  J. Dobaczewski,et al.  Erratum: Time-odd components in the mean field of rotating superdeformed nuclei [Phys. Rev. C 52, 1827 (1995)] , 1997 .

[3]  J. F. Berger,et al.  Time-dependent quantum collective dynamics applied to nuclear fission , 1991 .

[4]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[5]  D. Brink,et al.  Time-dependent hartree-fock theory with Skyrme's interaction , 1975 .

[6]  G. Bertsch,et al.  Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction , 2009, 0910.2940.

[7]  Dobaczewski,et al.  Time-odd components in the mean field of rotating superdeformed nuclei. , 1995, Physical review. C, Nuclear physics.

[8]  D. Vretenar,et al.  Relativistic nuclear energy density functional constrained by low-energy QCD , 2005, nucl-th/0509040.

[9]  M. Kortelainen,et al.  Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.

[10]  T. Lesinski,et al.  Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei , 2009, 0909.3782.

[11]  Olivier Bokanowski,et al.  LOCAL APPROXIMATION FOR THE HARTREE–FOCK EXCHANGE POTENTIAL: A DEFORMATION APPROACH , 1999 .

[12]  B. Barrett Effective Interactions and Operators in Nuclei , 1975 .

[13]  J. Dobaczewski,et al.  Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations , 2008, 0801.0924.

[14]  J. Negele Density dependent interactions , 1975 .

[15]  V. B. Soubbotin,et al.  Quasilocal density functional theory and its application within the extended Thomas-Fermi approximation , 2003 .

[16]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[17]  S. Goriely,et al.  Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0 neutron-matter gap , 2008, 0809.0447.

[18]  T. Lesinski,et al.  The tensor part of the Skyrme energy density functional. I. Spherical nuclei , 2007, 0704.0731.

[19]  John W. Negele,et al.  Density-matrix expansion for an effective nuclear Hamiltonian , 1972 .

[20]  C. Titin-Schnaider,et al.  Coulomb exchange contribution in nuclear Hartree-Fock calculations , 1974 .

[21]  J. Dobaczewski,et al.  Local density approximation for proton-neutron pairing correlations: Formalism , 2004 .

[22]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[23]  S. K. Bogner,et al.  Density matrix expansion for low-momentum interactions , 2008, 0811.4198.

[24]  B. M. Fulk MATH , 1992 .

[25]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[26]  V. B. Soubbotin,et al.  Extended Thomas–Fermi approximation to the one-body density matrix , 1999 .