Existence and Uniqueness of Continuous Solution for a Non-local Coupled System Modeling the Dynamics of Dislocation Densities

In this paper, we study a non-local coupled system that arises in the theory of dislocations densities dynamics. Based on a new gradient entropy estimate in $$L \log L$$ L log L space, we prove the global existence of a continuous solution. The approach is made by adding a viscosity term and passing to the limit for vanishing viscosity. A comparison principle with respect to time is used for proving uniqueness of the solution for the local problem.

[1]  A. Hajj Short time existence and uniqueness in Hölder spaces for the 2D dynamics of dislocation densities , 2009, 0903.1559.

[2]  A. El Hajj,et al.  A convergent scheme for a non-local coupled system modelling dislocations densities dynamics , 2007, Math. Comput..

[3]  J. Zimmer,et al.  Dislocation Mechanics , 2022 .

[4]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[5]  R. Boudjerada,et al.  Global existence results for eikonal equation with BV initial data , 2015 .

[6]  R. Monneau,et al.  Global Existence for a System of Non-Linear and Non-Local Transport Equations Describing the Dynamics of Dislocation Densities , 2009, 0901.0219.

[7]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[8]  Ahmad El Hajj,et al.  Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics , 2007, SIAM J. Math. Anal..

[9]  N. Walkington,et al.  A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations , 2015 .

[10]  Régis Monneau,et al.  Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution , 2006 .

[11]  István Groma,et al.  Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation , 1999 .

[12]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[13]  H. Ibrahim Existence and Uniqueness for a Nonlinear Parabolic/Hamilton-Jacobi Coupled System Describing the Dynamics of Dislocation Densities , 2007, math/0703783.

[14]  Vivian Rizik,et al.  Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities , 2018 .

[15]  A. Hajj,et al.  Existence result for a one-dimensional eikonal equation , 2015 .

[16]  M. Jazar,et al.  Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system , 2009, 0903.0964.

[17]  Pierre Suquet,et al.  Microstructure in plasticity without nonconvexity , 2016 .

[18]  Guy Barles,et al.  Global Existence Results and Uniqueness for Dislocation Equations , 2008, SIAM J. Math. Anal..

[19]  G. Barles,et al.  UNIQUENESS RESULTS FOR NONLOCAL HAMILTON-JACOBI EQUATIONS , 2008, 0803.2480.

[20]  R. Monneau,et al.  GLOBAL CONTINUOUS SOLUTIONS FOR DIAGONAL HYPERBOLIC SYSTEMS WITH LARGE AND MONOTONE DATA , 2010 .