Prospects and challenges of quantitative phase imaging in tumor cell biology

Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

[1]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[2]  D. Dirksen,et al.  Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. , 2008, Applied optics.

[3]  Björn Kemper,et al.  microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. , 2016, Reproductive biomedicine online.

[4]  Daniel Carl,et al.  Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells , 2006, SPIE Photonics Europe.

[5]  Huafeng Ding,et al.  Instantaneous Spatial Light Interference Microscopy. , 2010, Optics express.

[6]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[7]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[8]  Jong Chul Ye,et al.  Self-reference quantitative phase microscopy for microfluidic devices. , 2010, Optics letters.

[9]  Natan T Shaked,et al.  Dual-interference-channel quantitative-phase microscopy of live cell dynamics. , 2009, Optics letters.

[10]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[11]  Steffi Ketelhut,et al.  Quantitative Stain-Free and Continuous Multimodal Monitoring of Wound Healing In Vitro with Digital Holographic Microscopy , 2014, PloS one.

[12]  Natan T Shaked,et al.  Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. , 2010, Journal of biomedical optics.

[13]  Tomasz Kozacki,et al.  Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system. , 2009, Optics express.

[14]  M. Mir,et al.  Simultaneous optical measurements of cell motility and growth , 2011, Biomedical optics express.

[15]  Daniel Carl,et al.  Investigation of living pancreas tumor cells by digital holographic microscopy. , 2006, Journal of biomedical optics.

[16]  Patrik Langehanenberg,et al.  Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. , 2007, Journal of biomedical optics.

[17]  Daniel Carl,et al.  Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. , 2004, Applied optics.

[18]  Patrik Langehanenberg,et al.  Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy. , 2010, Journal of biomedical optics.

[19]  B. Wattellier,et al.  Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. , 2009, Optics express.

[20]  Chun-Min Lo,et al.  High-resolution quantitative phase-contrast microscopy by digital holography. , 2005, Optics express.

[21]  Patrik Langehanenberg,et al.  Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy , 2008, SPIE Photonics Europe.

[22]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[23]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[24]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[25]  E. Cuche,et al.  Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. , 1999, Applied optics.

[26]  Universitätsklinikum Münster,et al.  Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma , 2012 .

[27]  O. Haeberlé,et al.  High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. , 2009, Optics letters.

[28]  Björn Kemper,et al.  microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements , 2015, PloS one.