Failure of heterogeneous materials: A dynamic phase transition?

Abstract While there exists a unified theoretical framework–Linear Elastic Fracture Mechanics–to describe the failure of homogeneous materials, understanding and modeling the mechanical properties of heterogeneous media continue to raise significant fundamental challenges. Stress enhancement in the vicinity of cracks indeed makes classical homogenization methods irrelevant to predict the toughness and lifetime of heterogeneous materials. “Mean field” approaches have been proposed to estimate these quantities, but they remain limited to dilute damage. Numerical simulations do not suffer from such limitations, and disorder can be tuned continuously. Molecular Dynamics simulations allow one to characterize damage and fracture in amorphous materials at the nanoscale, i.e. at the scale of their inhomogeneities. However, these simulations are up to now limited to dynamic fracture, which confers further complexity to the observed mechanisms. A “minimalist” approach consists in exploiting the analogy between scalar mode III elasticity and electricity through the study of random fuse networks breakdown. In two dimensions, powerful algorithms can compute the exact stress field in an elastic medium containing cracks of arbitrary shapes. However, although these tools have been useful in solving some classical problems (e.g. size dependence of materials strength), a clear predictive unified theoretical framework is still missing. An efficient theory should be able to predict, a minima , the morphology of fracture surfaces, which encodes the interaction between the propagating crack front and the surrounding microstructure. We provide a review of recent quantitative fractography experiments. The most striking observations in this field is the existence of universal morphological features, independent of both the material and the loading conditions, reminiscent of interface growth problems. In this context, we analyze models which describe the crack front as an elastic line that propagates in a random potential. In these models, the onset of crack propagation is interpreted as a dynamic phase transition, while sub-critical crack growth is assimilated to thermally assisted depinning.

[1]  Mehran Kardar Nonequilibrium dynamics of interfaces and lines , 1998 .

[2]  Three-dimensional imaging of colloidal glasses under steady shear. , 2006, Physical review letters.

[3]  Roux,et al.  Interfacial crack pinning: Effect of nonlocal interactions. , 1995, Physical review letters.

[4]  M. Tomozawa,et al.  Fracture of Glasses , 1996 .

[5]  Damien Vandembroucq,et al.  Effective toughness of heterogeneous brittle materials , 2003, cond-mat/0409045.

[6]  Srdjan Simunovic,et al.  Scaling of fracture strength in disordered quasi-brittle materials , 2003 .

[7]  H. Bergkvist Some experiments on crack motion and arrest in polymethylmethacrylate , 1974 .

[8]  Alberto Rosso,et al.  Roughness at the depinning threshold for a long-range elastic string. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  I. Procaccia,et al.  Crack propagation in disordered materials: how to decipher fracture surfaces , 2007 .

[10]  Stefano Zapperi,et al.  Fracture statistics in the three-dimensional random fuse model , 2006 .

[11]  G. Durin,et al.  Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials , 1994 .

[12]  K. Ravi-Chandar,et al.  Interaction of shear waves and propagating cracks. , 2003, Physical review letters.

[13]  Li,et al.  Crack arrest by residual bonding in resistor and spring networks. , 1988, Physical review. B, Condensed matter.

[14]  Matteo Ciccotti,et al.  Stress-corrosion mechanisms in silicate glasses , 2009, 0901.2809.

[15]  G. Ravichandran,et al.  Fracture through cavitation in a metallic glass , 2008 .

[16]  Larkin,et al.  Theory of collective flux creep. , 1989, Physical review letters.

[17]  Roux,et al.  Experimental measurements of the roughness of brittle cracks. , 1992, Physical review letters.

[18]  The Shape of Slowly Growing Cracks , 1995 .

[19]  Raisanen,et al.  Scaling of interfaces in brittle fracture and perfect plasticity , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Stefano Zapperi,et al.  Crack roughness and avalanche precursors in the random fuse model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[22]  F Célarié,et al.  Glass breaks like metal, but at the nanometer scale. , 2003, Physical review letters.

[23]  L. Ponson,et al.  Reply to ``Comment on `Cleaved surface of i-AlPdMn quasicrystals: Influence of the local temperature elevation at the crack tip on the fracture surface roughness' '' , 2006, cond-mat/0609326.

[24]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[25]  Huajian Gao,et al.  On perturbations of plane cracks , 1998 .

[26]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[27]  J. Willis,et al.  Three-dimensional dynamic perturbation of a propagating crack , 1997 .

[28]  Alex Hansen,et al.  Origin of the universal roughness exponent of brittle fracture surfaces:stress-weighted percolation in the damage zone. , 2003, Physical review letters.

[29]  M. J. Alava,et al.  QUASISTATIC CRACKS AND MINIMAL ENERGY SURFACES , 1998 .

[30]  W. Krauth,et al.  Dynamics below the depinning threshold in disordered elastic systems. , 2006, Physical review letters.

[31]  Fracture of disordered solids in compression as a critical phenomenon. III. Analysis of the localization transition. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  J. Rice,et al.  Perturbative simulations of crack front waves , 2000 .

[33]  Alex Hansen,et al.  FRACTURE IN THREE-DIMENSIONAL FUSE NETWORKS , 1998 .

[34]  Priya Vashishta,et al.  Interaction of voids and nanoductility in silica glass. , 2007, Physical review letters.

[35]  F. Hild,et al.  Material-independent crack arrest statistics , 2004, cond-mat/0409050.

[36]  Eran Bouchbinder,et al.  Disentangling scaling properties in anisotropic fracture. , 2005, Physical review letters.

[37]  E. Bouchaud,et al.  Characterization of self-affine surfaces from 3D digital reconstruction , 1998 .

[38]  T. Giamarchi,et al.  Creep motion of an elastic string in a random potential. , 2004, Physical review letters.

[39]  J. R. Rice,et al.  Can crack front waves explain the roughness of cracks , 2002 .

[40]  H. Larralde,et al.  Three-dimensional stability analysis of planar straight cracks propagating quasistatically under type I loading , 1995 .

[41]  J. W. Obreimoff The splitting strength of mica , 1930 .

[42]  E. Sommer Formation of fracture ‘lances’ in glass , 1969 .

[43]  Roughness of glass surfaces formed by sub-critical crack growth , 2007 .

[44]  J Fineberg,et al.  Crack front waves and the dynamics of a rapidly moving crack. , 2002, Physical review letters.

[45]  Hans J. Herrmann,et al.  Extensions of Fibre Bundle Models , 2006 .

[46]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  J. Fineberg,et al.  Comment on "Interaction of shear waves and propagating cracks". , 2004, Physical review letters.

[48]  James R. Rice,et al.  First-Order Variation in Elastic Fields Due to Variation in Location of a Planar Crack Front , 1985 .

[49]  K. Ravi-Chandar,et al.  Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening , 2005 .

[50]  A. Hansen,et al.  Perfect plasticity in a random medium , 1992 .

[51]  Roux,et al.  Roughness of two-dimensional cracks in wood. , 1994, Physical review letters.

[52]  M J Alava,et al.  Acoustic emission from paper fracture. , 2002, Physical review letters.

[53]  L. Leibler,et al.  Analysis of polymer blend morphologies from transmission electron micrographs , 2005 .

[54]  Jay Fineberg,et al.  Instability in dynamic fracture , 1999 .

[55]  C. Rountree,et al.  Experimental investigation of damage and fracture in glassy materials at the nanometre scale , 2006 .

[56]  M. Falk Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids , 1998, cond-mat/9803058.

[57]  S. Zapperi,et al.  Crack roughness in the two-dimensional random threshold beam model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Pierre Le Doussal,et al.  Renormalization of Pinned Elastic Systems , 2001 .

[59]  Damien Vandembroucq,et al.  Material-independent crack arrest statistics: application to indentation experiments , 2006, cond-mat/0604156.

[60]  Patrick Ilg,et al.  Probing a critical length scale at the glass transition. , 2010, Physical review letters.

[61]  Jean Schmittbuhl,et al.  Direct Observation of a Self-Affine Crack Propagation , 1997 .

[62]  L. I. Salminen,et al.  Analysis of long crack lines in paper webs , 2003 .

[63]  Arbabi,et al.  Mechanics of disordered solids. III. Fracture properties. , 1993, Physical review. B, Condensed matter.

[64]  Long distance roughness of fracture surfaces in heterogeneous materials , 1998 .

[65]  Middleton,et al.  Numerical results for the ground-state interface in a random medium. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  J. Rice,et al.  Crack front waves , 1998 .

[67]  Risto M. Nieminen,et al.  Fracture of three-dimensional fuse networks with quenched disorder , 1998 .

[68]  Alessandro Vespignani,et al.  Plasticity and avalanche behaviour in microfracturing phenomena , 1997, Nature.

[69]  N Mallick,et al.  Discrepancy between subcritical and fast rupture roughness: a cumulant analysis. , 2007, Physical review letters.

[70]  L. Ponson,et al.  Two-dimensional scaling properties of experimental fracture surfaces. , 2006, Physical review letters.

[71]  Duxbury,et al.  Size effects of electrical breakdown in quenched random media. , 1986, Physical review letters.

[72]  Stefano Zapperi,et al.  Planar cracks in the fuse model , 2000 .

[73]  S. Ciliberto,et al.  INTERACTION OF SOUND WITH FAST CRACK PROPAGATION , 1998 .

[74]  Florin Paun,et al.  Fracture and damage at a microstructural scale , 1999, Comput. Sci. Eng..

[75]  Daniel S. Fisher,et al.  Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media , 1997 .

[76]  D. Fichou,et al.  Time resolved observation of fracture events in mica crystal using scanning tunneling microscope , 2006 .

[77]  R. Toussaint,et al.  Fracture of disordered solids in compression as a critical phenomenon. I. Statistical mechanics formalism. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  L. Ponson,et al.  Failure mechanisms and surface roughness statistics of fractured Fontainebleau sandstone. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Elisabeth Bouchaud,et al.  Scaling properties of cracks , 1997 .

[80]  Lei-Han Tang,et al.  Driven interface depinning in a disordered medium , 1997 .

[81]  S. Zapperi,et al.  Crack surface roughness in three-dimensional random fuse networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Daniel S. Fisher,et al.  Quasistatic Crack Propagation in Heterogeneous Media , 1996, cond-mat/9611196.

[83]  M. Ciccotti,et al.  The crack tip: a nanolab for studying confined liquids. , 2008, Physical review letters.

[84]  Stefano Zapperi,et al.  Statistical models of fracture , 2006, cond-mat/0609650.

[85]  P. Le Doussal,et al.  Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator , 2009, 0904.4156.

[86]  Priya Vashishta,et al.  Void deformation and breakup in shearing silica glass. , 2009, Physical review letters.

[87]  Jean Schmittbuhl,et al.  Anomalous roughening of wood fractured surfaces , 1998 .

[88]  Jay Fineberg,et al.  Confirming the continuum theory of dynamic brittle fracture for fast cracks , 1999, Nature.

[89]  K. Watson,et al.  Lawrence Berkeley National Laboratory Recent Work Title , 2012 .

[90]  Stéphane Roux,et al.  Field measurements of the roughness of fault surfaces , 1993 .

[91]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[92]  Elisabeth Bouchaud,et al.  Nano-ductile crack propagation in glasses under stress corrosion: spatiotemporal evolution of damage in the vicinity of the crack tip , 2005 .

[93]  Low self-affine exponents of fractured glass ceramics surfaces. , 2006, Physical review letters.

[94]  Matteo Ciccotti,et al.  Measuring nanoscale stress intensity factors with an atomic force microscope , 2010, 1002.1877.

[95]  Scaling exponents for barkhausen avalanches in polycrystalline and amorphous ferromagnets , 2000, Physical review letters.

[96]  Halpin-Healy,et al.  Directed polymers in random media: Probability distributions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[97]  Bouchaud,et al.  Scaling of crack surfaces and implications for fracture mechanics , 2000, Physical review letters.

[98]  Leon M Keer,et al.  Stress-intensity factors for a semi-infinite plane crack with a wavy front , 1984 .

[99]  L. Leibler,et al.  Crystalline organization and toughening : example of polyamide-12 , 2005 .

[100]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[101]  A. Argon Plastic deformation in metallic glasses , 1979 .

[102]  S. Wiederhorn,et al.  Fracture of silicate glasses: ductile or brittle? , 2004, Physical review letters.

[103]  Bouchaud,et al.  Models of fractal cracks. , 1993, Physical review letters.

[104]  P. Daguier,et al.  Pinning and Depinning of Crack Fronts in Heterogeneous Materials , 1997 .

[105]  A. Hansen,et al.  Rupture Processes in Fibre Bundle Models , 2006 .

[106]  A unified study of crack propagation in amorphous silica: Using experiments and simulations , 2007 .

[107]  Roux,et al.  Roughness of crack interfaces. , 1991, Physical review letters.

[108]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[109]  Nakano,et al.  Dynamics and morphology of brittle cracks: A molecular-dynamics study of silicon nitride. , 1995, Physical review letters.

[110]  R. Toussaint,et al.  Fracture of disordered solids in compression as a critical phenomenon. II. Model Hamiltonian for a population of interacting cracks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  J. P. Wittmer,et al.  Continuum limit of amorphous elastic bodies II: Linear response to a point source force , 2004 .

[112]  Nanoscale damage during fracture in silica glass , 2006, cond-mat/0608730.

[113]  J. Planès,et al.  Fractal Dimension of Fractured Surfaces: A Universal Value? , 1990 .

[114]  Eran Bouchbinder,et al.  Fracture surfaces as multiscaling graphs. , 2005, Physical review letters.

[115]  S Prades,et al.  Scaling exponents for fracture surfaces in homogeneous glass and glassy ceramics. , 2006, Physical review letters.

[116]  E. Bouchaud The Morphology of Fracture Surfaces: A Tool for Understanding Crack Propagation in Complex Materials , 2003 .

[117]  Roux,et al.  Scaling laws in fracture. , 1989, Physical review. B, Condensed matter.

[118]  J. Fineberg,et al.  Propagating solitary waves along a rapidly moving crack front , 2001, Nature.

[119]  F. Schmitt,et al.  Scaling invariance of crack surfaces , 1995 .

[120]  Experimental analysis of self-affine fractured rock surfaces through shadow length measurements , 2000 .

[121]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[122]  Jean-Pierre Hulin,et al.  Experimental analysis of fracture rugosity in granular and compact rocks , 1998 .

[123]  János Kertész,et al.  SELF-AFFINE RUPTURE LINES IN PAPER SHEETS , 1993 .

[124]  Alex Hansen,et al.  Statistics of fracture surfaces. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[125]  Guido Caldarelli,et al.  Dynamic fracture model for acoustic emission , 2003 .

[126]  Stéphane Santucci,et al.  Subcritical statistics in rupture of fibrous materials: experiments and model. , 2004, Physical review letters.

[127]  J. Schmittbuhl,et al.  High resolution description of a crack front in a heterogeneous Plexiglas block. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[128]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[129]  Jean Schmittbuhl,et al.  Influence of the specimen geometry on R-curve behavior and roughening of fracture surfaces , 2003 .

[130]  Elisabeth Bouchaud,et al.  Anomalous scaling of mortar fracture surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  From individual to collective pinning: Effect of long-range elastic interactions , 1998, cond-mat/9804105.

[132]  Alex Hansen,et al.  Burst avalanches in bundles of fibers: Local versus global load-sharing , 1994 .

[133]  Water Entry into Silica Glass During Slow Crack Growth , 1991 .

[134]  M. Kardar,et al.  Dynamic roughening of directed lines. , 1992, Physical review letters.

[135]  J. Guin,et al.  Surfaces formed by subcritical crack growth in silicate glasses , 2006 .

[136]  Juan M. Lopez,et al.  Anomalous scaling of fracture surfaces , 1998 .

[137]  J. Schmittbuhl,et al.  Fracture roughness scaling: A case study on planar cracks , 2010, 1007.1188.

[138]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[139]  S. Redner,et al.  A random fuse model for breaking processes , 1985 .

[140]  Bouchaud,et al.  Statistics of branched fracture surfaces. , 1993, Physical review. B, Condensed matter.

[141]  P Chauve,et al.  Renormalization of pinned elastic systems: how does it work beyond one loop? , 2001, Physical review letters.

[142]  Surface fracture of glassy materials as detected by real-time atomic force microscopy (AFM) experiments , 2002, cond-mat/0207583.

[143]  K. Ravi-Chandar,et al.  Dynamic Fracture of Nominally Brittle Materials , 1998 .

[144]  Joachim Mathiesen,et al.  Roughening of fracture surfaces: the role of plastic deformation. , 2003, Physical review letters.

[145]  M. Adda-Bedia,et al.  Fracture surfaces of heterogeneous materials: A 2D solvable model , 2006, cond-mat/0610185.

[146]  Depinning exponents of the driven long-range elastic string , 2006, cond-mat/0612323.

[147]  Alex Hansen,et al.  Roughness of interfacial crack fronts: stress-weighted percolation in the damage zone. , 2003, Physical review letters.

[148]  Renaud Toussaint,et al.  Local waiting time fluctuations along a randomly pinned crack front. , 2006, Physical review letters.

[149]  R. Salganik,et al.  Brittle fracture of solids with arbitrary cracks , 1974 .

[150]  John R. Rice,et al.  A first-order perturbation analysis of crack trapping by arrays of obstacles , 1989 .

[151]  Effect of disorder and notches on crack roughness. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  Rajiv K. Kalia,et al.  Morphology of pores and interfaces and mechanical behavior of nanocluster-assembled silicon nitride ceramic , 1997 .

[153]  Inhomogeneous elastic response of silica glass. , 2006, Physical review letters.

[154]  Kardar,et al.  Critical dynamics of contact line depinning. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[155]  S. Ciliberto,et al.  Experimental study of crackling noise: conditions on power law scaling correlated with fracture precursors , 2009 .

[156]  M. Hinojosa,et al.  Scaling properties of slow fracture in glass: from deterministic to irregular topography , 2008 .

[157]  Elisabeth Bouchaud,et al.  ROUGHNESS OF A CRACK FRONT PINNED BY MICROSTRUCTURAL OBSTACLES , 1995 .

[158]  L. Ponson,et al.  Depinning transition in the failure of inhomogeneous brittle materials. , 2008, Physical review letters.

[159]  J. Scheibert,et al.  Brittle-quasibrittle transition in dynamic fracture: an energetic signature. , 2009, Physical review letters.

[160]  C. Rountree,et al.  Effects of finite probe size on self-affine roughness measurements. , 2009, Physical review letters.

[161]  David A. Weitz,et al.  Structural Rearrangements That Govern Flow in Colloidal Glasses , 2007, Science.

[162]  Stefano Zapperi,et al.  Crack avalanches in the three-dimensional random fuse model , 2005 .

[163]  E. Rolley,et al.  Roughness of the Contact Line on a Disordered Substrate , 1998 .

[164]  Creep of a fracture line in paper peeling. , 2007, Physical review letters.

[165]  Harold Auradou,et al.  Anisotropic self-affine properties of experimental fracture surfaces , 2006 .

[166]  G. Valentin,et al.  Size effect in fracture: Roughening of crack surfaces and asymptotic analysis , 2002 .

[167]  I. Procaccia,et al.  Void formation and roughening in slow fracture. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[168]  T. Utsu Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches , 1999 .

[169]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[170]  L. Ponson,et al.  Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition. , 2008, Physical review letters.

[171]  J. Fineberg,et al.  The Near-Tip Fields of Fast Cracks , 2010, Science.

[172]  Didier Sornette Mean-field solution of a block-spring model of earthquakes , 1992 .