Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants

[1]  CS Prakash A look at the recent news from around the world on genetically modified food and crops , 2014, GM crops & food.

[2]  R. Hellmich,et al.  Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms , 2013, GM crops & food.

[3]  A. Raybould,et al.  Protection goals in environmental risk assessment: a practical approach , 2014, Transgenic Research.

[4]  Y. Devos,et al.  EFSA’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead , 2014, Transgenic Research.

[5]  Antoine Messéan,et al.  No evidence requiring change in the risk assessment of Inachis io larvae , 2013 .

[6]  F. Schaarschmidt,et al.  Assessment of the potential impact of a Bt maize hybrid expressing Cry3Bb1 on ground beetles (Carabidae) , 2013 .

[7]  Gábor L. Lövei,et al.  Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland , 2013 .

[8]  K. Narva,et al.  Bacillus thuringiensis Cry34Ab1/Cry35Ab1 Interactions with Western Corn Rootworm Midgut Membrane Binding Sites , 2013, PloS one.

[9]  G. Burgio BOOK REVIEW: Hodek I., van Emden H.F. & Honěk A. (eds): ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE). , 2013 .

[10]  A. Shelton,et al.  Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. , 2013, Chemosphere.

[11]  Jordi Sardans,et al.  Connecting the green and brown worlds . allometric and stoichiometric predictability of above- and below-ground networks , 2013 .

[12]  Stephen Muggleton,et al.  Provided for Non-commercial Research and Educational Use Only. Not for Reproduction, Distribution or Commercial Use. Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions , 2022 .

[13]  F. Bigler,et al.  Development of an Early-Tier Laboratory Bioassay for Assessing the Impact of Orally-Active Insecticidal Compounds on Larvae of Coccinella septempunctata (Coleoptera: Coccinellidae) , 2012, Environmental entomology.

[14]  L. Malone,et al.  Establishing a database of bio‐ecological information on non‐target arthropod species to support the environmental risk assessment of genetically modified crops in the EU , 2012 .

[15]  A. Müller,et al.  Environmental risk assessment for the small tortoiseshell Aglais urticae and a stacked Bt‐maize with combined resistances against Lepidoptera and Chrysomelidae in central European agrarian landscapes , 2012, Molecular ecology.

[16]  Y. Devos,et al.  Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms , 2012, Transgenic Research.

[17]  I. Hodek,et al.  5. Food Relationships , 2012 .

[18]  I. Hodek,et al.  Ecology and behaviour of the ladybird beetles (Coccinellidae) , 2012 .

[19]  J. Lobo,et al.  Predicted effect of climate change on the invasibility and distribution of the Western corn root‐worm , 2012 .

[20]  A. Raybould,et al.  Ecological risk assessments for transgenic crops with combined insect‐resistance traits: the example of Bt11 × MIR604 maize , 2012 .

[21]  Andy Hart,et al.  Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. , 2012, The Science of the total environment.

[22]  Gladys K. Andino,et al.  Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields , 2012, PloS one.

[23]  Antoine Messéan,et al.  Estimating the effects of Cry1F Bt‐maize pollen on non‐target Lepidoptera using a mathematical model of exposure , 2011, The Journal of applied ecology.

[24]  F. Bigler,et al.  Evaluating environmental risks of genetically modified crops: ecological harm criteria for regulatory decision-making , 2012 .

[25]  J. V. Lenteren,et al.  The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake , 2012, BioControl.

[26]  F. Ortego,et al.  Assessment of prey-mediated effects of the coleopteran-specific toxin Cry3Bb1 on the generalist predator Atheta coriaria (Coleoptera: Staphylinidae) , 2011, Bulletin of Entomological Research.

[27]  Jörg Romeis,et al.  Bt maize and integrated pest management--a European perspective. , 2011, Pest management science.

[28]  P. Kudsk,et al.  Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management , 2011 .

[29]  R. Hellmich,et al.  Impact of Cry3Bb1-expressing Bt maize on adults of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). , 2011, Pest management science.

[30]  M. Tamò,et al.  Regulatory considerations surrounding the deployment Of Bt-expressing cowpea in Africa , 2011, GM crops.

[31]  H. Turin,et al.  Forty years of carabid beetle research in Europe – from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation , 2011, ZooKeys.

[32]  M. Meissle,et al.  Non‐target risk assessment of Bt crops – Cry protein uptake by aphids , 2011 .

[33]  A. Raybould,et al.  Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize , 2011, Transgenic Research.

[34]  Anthony M. Shelton,et al.  Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants , 2010, Transgenic Research.

[35]  J. Lobo,et al.  Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: integrating distribution models and physiological thresholds to assess climatic favourability , 2010 .

[36]  Jörg Romeis,et al.  Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design , 2010, Transgenic Research.

[37]  W. Nentwig,et al.  Does GM wheat affect saprophagous Diptera species (Drosophilidae, Phoridae)? , 2010 .

[38]  J. Romeis,et al.  Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum , 2010 .

[39]  W. Nentwig,et al.  Effect of Bt maize on the reproduction and development of saprophagous Diptera over multiple generations. , 2010 .

[40]  Justus Wesseler,et al.  Potential damage costs of Diabrotica virgifera virgifera infestation in Europe – the ‘no control’ scenario , 2010 .

[41]  J. Schiemann,et al.  A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe , 2010, Proceedings of the Royal Society B: Biological Sciences.

[42]  Christoph Then,et al.  Testbiotech analysis of EFSA Guidance on the environmental risk assessment of genetically modified plants , 2010 .

[43]  J. Settele,et al.  European Red List of Butterflies , 2010 .

[44]  Antoine Messéan,et al.  Guidance on the environmental risk assessment of genetically modified plants , 2010 .

[45]  W. Nentwig,et al.  Decomposition dynamics and structural plant components of genetically modified Bt maize leaves do not differ from leaves of conventional hybrids , 2010, Transgenic Research.

[46]  X. Pons,et al.  Pests, pesticide use and alternative options in European maize production: current status and future prospects , 2009 .

[47]  D. Weber,et al.  Coccinellidae as predators of mites: Stethorini in biological control , 2009 .

[48]  A. Latorre,et al.  Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays , 2009, Bulletin of Entomological Research.

[49]  Joachim Schiemann,et al.  Problem formulation in the environmental risk assessment for genetically modified plants , 2009, Transgenic Research.

[50]  M. Meissle,et al.  The web‐building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms , 2009 .

[51]  J. Harwood,et al.  Quantification of Bt-endotoxin exposure pathways in carabid food webs across multiple transgenic events , 2009 .

[52]  F. Herzog,et al.  Case-specific monitoring of butterflies to determine potential effects of transgenic Bt-maize in Switzerland , 2009 .

[53]  F. Bigler,et al.  An approach for post‐market monitoring of potential environmental effects of Bt‐maize expressing Cry1Ab on natural enemies , 2009 .

[54]  Clive James,et al.  ISAAA Briefs brief 41 Global status of Commercialized biotech/GM Crops: 2009 , 2009 .

[55]  F. Ortego,et al.  Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae) , 2008, Transgenic Research.

[56]  A. Shelton,et al.  Assessment of risk of insect-resistant transgenic crops to nontarget arthropods , 2008, Nature Biotechnology.

[57]  A. Raybould,et al.  Non‐target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm , 2007 .

[58]  Alan Raybould,et al.  Problem formulation and hypothesis testing for environmental risk assessments of genetically modified crops. , 2006, Environmental biosafety research.

[59]  R. K. Peterson,et al.  Genetically Engineered Plants, Endangered Species, and Risk: A Temporal and Spatial Exposure Assessment for Karner Blue Butterfly Larvae and Bt Maize Pollen , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[60]  Franz Bigler,et al.  Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields , 2006 .

[61]  A. Raybould,et al.  A tiered system for assessing the risk of genetically modified plants to non-target organisms. , 2006, Environmental biosafety research.

[62]  J. Römbke Tools and Techniques for the Assessment of Ecotoxicological Impacts of Contaminants in the Terrestrial Environment , 2006 .

[63]  A. Lang,et al.  Bt maize pollen exposure and impact on the garden spider, Araneus diadematus , 2006 .

[64]  Clive James,et al.  Global status of commercialized biotech/GM crops: 2006. , 2006 .

[65]  B. Griffiths,et al.  Decomposition processes under Bt ( Bacillus thuringiensis ) maize: Results of a multi-site experiment , 2006 .

[66]  F. Bigler,et al.  Assessing the Effects of Bt Maize on the Predatory Mite Neoseiulus cucumeris , 2006, Experimental & Applied Acarology.

[67]  M. Saunders,et al.  Toxic and Behavioral Effects to Carabidae of Seed Treatments Used on Cry3Bb1- and Cry1Ab/c-Protected Corn , 2005 .

[68]  Jeffrey D Wolt,et al.  An ecological risk assessment of Cry1F maize pollen impact to pale grass blue butterfly. , 2005, Environmental biosafety research.

[69]  R Arditi,et al.  Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers , 2005, Molecular ecology.

[70]  D. Andow,et al.  Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn. , 2005, Environmental biosafety research.

[71]  G. Poppy,et al.  Effects of Bt maize on the herbivore Spodoptera littoralis (Lepidoptera: Noctuidae) and the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). , 2005, Transgenic Research.

[72]  A. Imdorf,et al.  Pollen nutrition and colony development in honey bees: part 1 , 2005 .

[73]  G. Poppy,et al.  Effects of Bt maize-fed prey on the generalist predator Poecilus cupreus L. (Coleoptera: Carabidae) , 2005, Transgenic Research.

[74]  C. Quince,et al.  Deleting species from model food webs , 2004, q-bio/0401037.

[75]  Z. W. Shappley,et al.  Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management , 2003 .

[76]  D. Bartsch,et al.  Selection of relevant non-target herbivores for monitoring the environmental effects of Bt maize pollen. , 2003, Environmental biosafety research.

[77]  R. Abraham,et al.  Role of mites and thrips in the agrobiocoenosis of the soybean. , 2003, Communications in agricultural and applied biological sciences.

[78]  K. Narva,et al.  Binary Insecticidal Crystal Protein from Bacillus thuringiensis, Strain PS149B1: Effects of Individual Protein Components and Mixtures in Laboratory Bioassays , 2002, Journal of economic entomology.

[79]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  P. J. Kennedy,et al.  A method for testing effects of plant protection products on spiders of the genus Pardosa (Araneae, Lycosidae) under laboratory conditions. , 2000 .

[81]  S. Hassan,et al.  A laboratory test system for assessing effects of plant protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). , 2000 .

[82]  P. J. Kennedy,et al.  A method for testing effects of plant protection products on the carabid beetle Poecilus cupreus (Coleoptera, Carabidae) under laboratory and semi-field conditions. , 2000 .

[83]  Udo Heimbach,et al.  Laboratory residual contact test with the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae) for regulatory testing of plant protection products. , 2000 .

[84]  A. Ufer,et al.  A test for evaluating the chronic effects of plant protection products on the rove beetle Aleochara bilineata Gyll. (Coleoptera: Staphylinidae) under laboratory and extended laboratory conditions. , 2000 .

[85]  J. Kiss Comparison of directional light trap catches in maize. , 1990 .

[86]  J. Waage,et al.  Parasitoids in classical biological control. , 1986 .

[87]  Mohamed Ali Ecological and physiological studies on the alfalfa ladybird , 1979 .

[88]  I. Hodek Biology of Coccinellidae , 1973, Springer Netherlands.

[89]  A. D. Schrijvera,et al.  Risk assessment of GM stacked events obtained from crosses between GM events , 2022 .