A polynomially solvable class of quadratic semi-assignment problems

Abstract The Quadratic Semi-Assignment Problem (QSAP) models a large variety of practical applications. In the present note we will consider a particular class of QSAP that can be solved by determining the maximum cost flow on a network. This class of problems arises in schedule synchronization and in transportation.

[1]  Wolfgang Domschke,et al.  Schedule synchronization for public transit networks , 1989 .

[2]  Panos M. Pardalos,et al.  Lower bounds for the quadratic assignment problem , 1994, Ann. Oper. Res..

[3]  Federico Malucelli,et al.  LOWER BOUNDS FOR THE QUADRIC SEMI-ASSIGNMENT PROBLEM. , 1993 .

[4]  Pierre Hansen,et al.  Improved Algorithms for Partitioning Problems in Parallel, Pipelined, and Distributed Computing , 1992, IEEE Trans. Computers.

[5]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[6]  Vangelis F. Magirou,et al.  An algorithm for the multiprocessor assignment problem , 1989 .

[7]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[8]  Federico Malucelli,et al.  Regional mass transit assignment with resource constraints , 1996 .

[9]  Stefan Voß Network Design Formulations in Schedule Synchronization , 1992 .

[10]  P. Chrétienne A polynomial algorithm to optimally schedule tasks on a virtual distributed system under tree-like precedence constraints , 1989 .

[11]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[12]  Giorgio Gallo,et al.  Lower bounds for the quadratic semi-assignment problem , 1986 .

[13]  Bruno Simeone,et al.  Optimal grouping of researchs into departments , 1991 .

[14]  Federico Malucelli,et al.  Quadratic Semi-Assignment Problems on Structured Graphs , 1994 .