CT angiography with volume rendering: advantages and applications in splanchnic vascular imaging.

The authors compared volume rendering with maximum intensity projection (MIP) and shaded surface display as a technique for generating three-dimensional (3D) images of the vasculature from spiral computed tomography (CT) data sets. In four patients with pathologic splanchnic vasculature, the advantages of volume-rendered display are illustrated for depiction of 3D vascular anatomy, vascular and visceral interrelationships, variant vasculature, tumor encasement, and hepatic tumor localization for presurgical planning.

[1]  J. Tashjian Three-dimensional CT Angiography , 1996 .

[2]  G. Rubin,et al.  Helical (spiral) CT of the retroperitoneum. , 1995, Radiologic clinics of North America.

[3]  B S Kuszyk,et al.  Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques. , 1995, Radiographics : a review publication of the Radiological Society of North America, Inc.

[4]  G D Rubin,et al.  CT angiography with spiral CT and maximum intensity projection. , 1992, Radiology.

[5]  D R Ney,et al.  Spiral Computed Tomography Arterial Portography With Three-Dimensional Volumetric Rendering for Oncologic Surgery Planning: A Retrospective Analysis , 1994, Investigative radiology.

[6]  E. Fishman,et al.  CT angiography with volume rendering: imaging findings. , 1995, AJR. American journal of roentgenology.

[7]  J. Brink Technical aspects of helical (spiral) CT. , 1995, Radiologic clinics of North America.

[8]  D Magid,et al.  Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality. , 1991, Journal of computer assisted tomography.

[9]  R L Morin,et al.  infoRAD: computers for clinical practice and education in radiology. Teleradiology: fundamental considerations and clinical applications. , 1993, Radiographics : a review publication of the Radiological Society of North America, Inc.

[10]  D Magid,et al.  Three dimensional imaging in orthopedics: state of the art 1988. , 1988, Orthopedics.

[11]  R. A. Drebin,et al.  Fidelity of Three‐dimensional CT Imaging for Detecting Fracture Gaps , 1989, Journal of computer assisted tomography.

[12]  M Galanski,et al.  Renal arterial stenoses: spiral CT angiography. , 1993, Radiology.

[13]  P. Silverman,et al.  Abdominal aortic aneurysms: evaluation with variable-collimation helical CT and overlapping reconstruction. , 1994, Radiology.

[14]  Elliot K. Fishman,et al.  Volumetric rendering of computed tomography data: principles and techniques , 1990, IEEE Computer Graphics and Applications.

[15]  R B Jeffrey,et al.  Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. , 1994, Radiology.

[16]  松本 正人,et al.  破裂能動脈瘤に対する Three-Dimensional CT Angiography (3D-CTA) , 1997 .

[17]  G D Rubin,et al.  Current status of three-dimensional spiral CT scanning for imaging the vasculature. , 1995, Radiologic clinics of North America.

[18]  Brink Ja Technical aspects of helical (spiral) CT. , 1995 .

[19]  S. Napel,et al.  Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. , 1993, Radiology.