Neural computational prediction of oral drug absorption based on CODES 2D descriptors.

A neural model based on a numerical molecular representation using CODES program to predict oral absorption of any structure is described. This model predicts both high and low-absorbed compounds with a global accuracy level of 74%. CODES/ANN methodology shows promising utilities not only as a conventional in silico tool in high-throughput screening or improvement of absorption capabilities procedures but also the improvement of in vitro-in vivo correlation could be addressed.

[1]  Tomoko Niwa,et al.  Using General Regression and Probabilistic Neural Networks To Predict Human Intestinal Absorption with Topological Descriptors Derived from Two-Dimensional Chemical Structures , 2003, J. Chem. Inf. Comput. Sci..

[2]  K. Luthman,et al.  Correlation of drug absorption with molecular surface properties. , 1996, Journal of pharmaceutical sciences.

[3]  D. E. Clark,et al.  Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. , 1999, Journal of pharmaceutical sciences.

[4]  J. D. Elliott,et al.  Prediction of the Intestinal Absorption of Endothelin Receptor Antagonists Using Three Theoretical Methods of Increasing Complexity , 1999, Pharmaceutical Research.

[5]  H. X. Liu,et al.  The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine , 2005, J. Comput. Aided Mol. Des..

[6]  Kristina Luthman,et al.  Polar Molecular Surface Properties Predict the Intestinal Absorption of Drugs in Humans , 1997, Pharmaceutical Research.

[7]  Gilles Klopman,et al.  ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  M. Bermejo,et al.  Pharmacokinetics in drug discovery. , 2008, Journal of pharmaceutical sciences.

[9]  Pang-Ning Tan,et al.  Receiver Operating Characteristic , 2009, Encyclopedia of Database Systems.

[10]  U Norinder,et al.  Theoretical calculation and prediction of drug transport processes using simple parameters and partial least squares projections to latent structures (PLS) statistics. The use of electrotopological state indices. , 2001, Journal of pharmaceutical sciences.

[11]  K. Luthman,et al.  Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. , 1998, Journal of medicinal chemistry.

[12]  Lemont B. Kier,et al.  New predictors for several ADME/Tox properties: Aqueous solubility, human oral absorption, and Ames genotoxicity using topological descriptors , 2004, Molecular Diversity.

[13]  Yuichi Sugiyama,et al.  Impact of Drug Transporter Studies on Drug Discovery and Development , 2003, Pharmacological Reviews.

[14]  S. Ekins,et al.  In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling , 2007, British journal of pharmacology.

[15]  Miguel A. Cabrera,et al.  TOPS-MODE approach for the prediction of blood-brain barrier permeation. , 2004, Journal of pharmaceutical sciences.

[16]  Han van de Waterbeemd,et al.  Drug bioavailability : estimation of solubility, permeability, absorption and bioavailability , 2003 .

[17]  Nuria E. Campillo,et al.  Artificial Neural Networks in ADMET Modeling: Prediction of Blood–Brain Barrier Permeation , 2008 .

[18]  A. Dokoumetzidis,et al.  Predictive models for oral drug absorption: from in silico methods to integrated dynamical models , 2007, Expert opinion on drug metabolism & toxicology.

[19]  J J Baldwin,et al.  Prediction of drug absorption using multivariate statistics. , 2000, Journal of medicinal chemistry.

[20]  C. Lipinski Drug-like properties and the causes of poor solubility and poor permeability. , 2000, Journal of pharmacological and toxicological methods.

[21]  Thomas J. Vidmar,et al.  The Madin Darby Canine Kidney (MDCK) Epithelial Cell Monolayer as a Model Cellular Transport Barrier , 2004, Pharmaceutical Research.

[22]  S Agatonovic-Kustrin,et al.  Theoretically-derived molecular descriptors important in human intestinal absorption. , 2001, Journal of pharmaceutical and biomedical analysis.

[23]  Xin Chen,et al.  Effect of Molecular Descriptor Feature Selection in Support Vector Machine Classification of Pharmacokinetic and Toxicological Properties of Chemical Agents , 2004, J. Chem. Inf. Model..

[24]  Stephen R. Johnson,et al.  Recent progress in the computational prediction of aqueous solubility and absorption , 2006, The AAPS Journal.

[25]  Tingjun Hou,et al.  ADME Evaluation in Drug Discovery, 7. Prediction of Oral Absorption by Correlation and Classification , 2007, J. Chem. Inf. Model..

[26]  Sean Ekins,et al.  In silico ADME/Tox: the state of the art. , 2002, Journal of molecular graphics & modelling.

[27]  Lawrence X. Yu,et al.  Predicting Human Oral Bioavailability of a Compound: Development of a Novel Quantitative Structure-Bioavailability Relationship , 2000, Pharmaceutical Research.

[28]  K Gubernator,et al.  Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. , 1998, Journal of medicinal chemistry.

[30]  H. van de Waterbeemd,et al.  ADMET in silico modelling: towards prediction paradise? , 2003, Nature reviews. Drug discovery.

[31]  P. Artursson,et al.  Contribution of the paracellular route to the pH-dependent epithelial permeability to cationic drugs. , 2004, Journal of pharmaceutical sciences.

[32]  Alex Avdeef,et al.  The rise of PAMPA , 2005, Expert opinion on drug metabolism & toxicology.

[33]  D. Butina,et al.  Predicting ADME properties in silico: methods and models. , 2002, Drug discovery today.

[34]  Ulf Norinder,et al.  Prediction of Polar Surface Area and Drug Transport Processes Using Simple Parameters and PLS Statistics , 2000, J. Chem. Inf. Comput. Sci..

[35]  Anna Forsby,et al.  The Integrated Acute Systemic Toxicity Project (ACuteTox) for the Optimisation and Validation of Alternative In Vitro Tests , 2007, Alternatives to laboratory animals : ATLA.

[36]  W. Humphreys,et al.  Drug Metabolism in Drug Design and Development , 2007 .

[37]  E. Lien,et al.  Caco-2 cell permeability vs human gastrointestinal absorption: QSPR analysis. , 2000, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[38]  I. Hidalgo,et al.  Assessing the absorption of new pharmaceuticals. , 2001, Current topics in medicinal chemistry.

[39]  K. Iseki,et al.  A general approach for the prediction of the intestinal absorption of drugs: regression analysis using the physicochemical properties and drug-membrane electrostatic interaction. , 1998, Journal of pharmaceutical sciences.

[40]  Fumiyoshi Yamashita,et al.  Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. , 2002, Journal of pharmaceutical sciences.

[41]  G Beck,et al.  Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. , 2001, Journal of pharmaceutical sciences.

[42]  Remigijus Didziapetris,et al.  Classification structure-activity relations (C-SAR) in prediction of human intestinal absorption. , 2003, Journal of pharmaceutical sciences.

[43]  Peter C. Jurs,et al.  Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure , 1998, J. Chem. Inf. Comput. Sci..

[44]  U Norinder,et al.  Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. , 1998, Journal of pharmaceutical sciences.

[45]  D L Massart,et al.  Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. , 2005, Journal of pharmaceutical and biomedical analysis.

[46]  Thomas J. Raub,et al.  Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. , 1989, Gastroenterology.

[47]  Marjo Yliperttula,et al.  Computational prediction of oral drug absorption based on absorption rate constants in humans. , 2006, Journal of medicinal chemistry.

[48]  J. Pin,et al.  Virtual screening workflow development guided by the "receiver operating characteristic" curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. , 2005, Journal of medicinal chemistry.

[49]  Han van de Waterbeemd,et al.  Estimation of Caco‐2 Cell Permeability using Calculated Molecular Descriptors , 1996 .

[50]  J. Tolan,et al.  MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. , 1999, Journal of pharmaceutical sciences.

[51]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[52]  Wei Zhang,et al.  Recent advances in computational prediction of drug absorption and permeability in drug discovery. , 2006, Current medicinal chemistry.

[53]  John Hodgson,et al.  ADMET—turning chemicals into drugs , 2001, Nature Biotechnology.

[54]  Ulf Norinder,et al.  Exploring the role of different drug transport routes in permeability screening. , 2005, Journal of medicinal chemistry.

[55]  A. N. Jain,et al.  Molecular hashkeys: a novel method for molecular characterization and its application for predicting important pharmaceutical properties of molecules. , 1999, Journal of medicinal chemistry.

[56]  Ulf Norinder,et al.  Prediction of ADMET Properties , 2006, ChemMedChem.

[57]  Andreas Klamt,et al.  Use of Surface Charges from DFT Calculations To Predict Intestinal Absorption , 2005, J. Chem. Inf. Model..

[58]  John G. Topliss,et al.  QSAR Model for Drug Human Oral Bioavailability1 , 2000 .

[59]  W. Köhler The task of Gestalt psychology , 1969 .

[60]  Antonio Chana,et al.  CODES/neural network model: A useful tool for in silico prediction of oral absorption and blood-brain barrier permeability of structurally diverse drugs , 2004 .

[61]  C. G. Mohan,et al.  Computer-assisted methods in chemical toxicity prediction. , 2007, Mini reviews in medicinal chemistry.

[62]  Hongmao Sun,et al.  A Universal Molecular Descriptor System for Prediction of LogP, LogS, LogBB, and Absorption , 2004, J. Chem. Inf. Model..

[63]  Tudor I. Oprea,et al.  Toward minimalistic modeling of oral drug absorption. , 1999, Journal of molecular graphics & modelling.