Critical behavior of a one-dimensional fixed-energy stochastic sandpile.

We study a one-dimensional fixed-energy version (that is, with no input or loss of particles) of Manna's stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value of the particle density, and exhibits the hallmarks of an absorbing-state phase transition, including finite-size scaling. Critical exponents are obtained from extensive simulations, which treat stationary and transient properties, and an associated interface representation. These exponents characterize the universality class of an absorbing-state phase transition with a static conserved density in one dimension; they differ from those expected at a linear-interface depinning transition in a medium with point disorder, and from those of directed percolation.