The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress

[1]  L. Bi,et al.  An automated approach for global identification of sRNA-encoding regions in RNA-Seq data from Mycobacterium tuberculosis. , 2016, Acta biochimica et biophysica Sinica.

[2]  B. Ueberheide,et al.  Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence , 2016, Proceedings of the National Academy of Sciences.

[3]  R. Brosch,et al.  ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. , 2015, Tuberculosis.

[4]  M. Voskuil,et al.  Toward Resolving the Paradox of the Critical Role of the DosR Regulon in Mycobacterium tuberculosis Persistence and Active Disease. , 2015, American journal of respiratory and critical care medicine.

[5]  A. Kierzek,et al.  Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells , 2015, BMC Genomics.

[6]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[7]  D. Schnappinger,et al.  Mycobacterial genes essential for the pathogen's survival in the host , 2015, Immunological reviews.

[8]  M. Niederweis,et al.  Mycobacteria, metals, and the macrophage , 2015, Immunological reviews.

[9]  M. Jarek,et al.  FurA contributes to the oxidative stress response regulation of Mycobacterium avium ssp. paratuberculosis , 2015, Front. Microbiol..

[10]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[11]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[12]  Nathan D. Price,et al.  The DNA-binding network of Mycobacterium tuberculosis , 2015, Nature Communications.

[13]  Michael Y. Galperin,et al.  Expanded microbial genome coverage and improved protein family annotation in the COG database , 2014, Nucleic Acids Res..

[14]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[15]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[16]  Wilbert Bitter,et al.  Take five - Type VII secretion systems of Mycobacteria. , 2014, Biochimica et biophysica acta.

[17]  Lydia M. Contreras,et al.  Small RNAs in mycobacteria: an unfolding story , 2014, Front. Cell. Infect. Microbiol..

[18]  Peter F. Stadler,et al.  Lacking alignments? The next-generation sequencing mapper segemehl revisited , 2014, Bioinform..

[19]  Rolf Backofen,et al.  CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains , 2014, Nucleic Acids Res..

[20]  D. Young,et al.  Noncoding RNA in Mycobacteria , 2014, Microbiology spectrum.

[21]  Bruno Dupuy,et al.  COV2HTML: a visualization and analysis tool of bacterial next generation sequencing (NGS) data for postgenomics life scientists. , 2014, Omics : a journal of integrative biology.

[22]  B. Tjaden,et al.  Computational analysis of bacterial RNA-Seq data , 2013, Nucleic acids research.

[23]  Ruifu Yang,et al.  Regulation of pathogenicity by noncoding RNAs in bacteria. , 2013, Future microbiology.

[24]  M. Niederweis,et al.  Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis , 2013, PLoS pathogens.

[25]  Diogo F. Veiga,et al.  Genome-Wide Discovery of Small RNAs in Mycobacterium tuberculosis , 2012, PloS one.

[26]  K. Poole Bacterial stress responses as determinants of antimicrobial resistance. , 2012, The Journal of antimicrobial chemotherapy.

[27]  D. Young,et al.  Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis , 2012, RNA biology.

[28]  T. Dick,et al.  How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. , 2012, Future microbiology.

[29]  G. Storz,et al.  Regulation by small RNAs in bacteria: expanding frontiers. , 2011, Molecular cell.

[30]  G. Lamichhane Mycobacterium Tuberculosis Response to Stress from Reactive Oxygen and Nitrogen Species , 2011, Front. Microbio..

[31]  P. Andersen,et al.  The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage. , 2011, DNA repair.

[32]  Gary K. Schoolnik,et al.  The Response of Mycobacterium Tuberculosis to Reactive Oxygen and Nitrogen Species , 2011, Front. Microbio..

[33]  I. Kawamura,et al.  Expression of the Mycobacterium tuberculosis PPE37 protein in Mycobacterium smegmatis induces low tumour necrosis factor alpha and interleukin 6 production in murine macrophages. , 2011, Journal of medical microbiology.

[34]  M. Glickman,et al.  Mycobacteria exploit three genetically distinct DNA double‐strand break repair pathways , 2011, Molecular microbiology.

[35]  M. Braunstein,et al.  Protein export systems of Mycobacterium tuberculosis: novel targets for drug development? , 2010, Future microbiology.

[36]  J. Vogel,et al.  Regulatory RNA in bacterial pathogens. , 2010, Cell host & microbe.

[37]  Rolf Backofen,et al.  Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA , 2010, Nucleic Acids Res..

[38]  Peter F. Stadler,et al.  Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures , 2009, PLoS Comput. Biol..

[39]  G. Palù,et al.  Characterization of a Mycobacterium tuberculosis ESX-3 Conditional Mutant: Essentiality and Rescue by Iron and Zinc , 2009, Journal of bacteriology.

[40]  D. Young,et al.  Identification of small RNAs in Mycobacterium tuberculosis , 2009, Molecular microbiology.

[41]  J. Vogel,et al.  Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes , 2009, RNA biology.

[42]  E. Rødland,et al.  Characterization of the major formamidopyrimidine–DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats , 2009, FEMS immunology and medical microbiology.

[43]  Yanmin Hu,et al.  Acute and Persistent Mycobacterium tuberculosis Infections Depend on the Thiol Peroxidase TPX , 2009, PloS one.

[44]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[45]  F. Repoila,et al.  Small regulatory non‐coding RNAs in bacteria: physiology and mechanistic aspects , 2009, Biology of the cell.

[46]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[47]  W. Bishai,et al.  Roles of SigB and SigF in the Mycobacterium tuberculosis Sigma Factor Network , 2007, Journal of bacteriology.

[48]  Wilbert Bitter,et al.  Type VII secretion — mycobacteria show the way , 2007, Nature Reviews Microbiology.

[49]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[50]  Alain L. Gervais,et al.  Identification of Mycobacterial σ Factor Binding Sites by Chromatin Immunoprecipitation Assays , 2006 .

[51]  David C. Young,et al.  Mycobacterium tuberculosis SigM Positively Regulates Esx Secreted Protein and Nonribosomal Peptide Synthetase Genes and Down Regulates Virulence-Associated Surface Lipid Synthesis , 2006, Journal of bacteriology.

[52]  A. Tyagi,et al.  Mycobacterial transcriptional signals: requirements for recognition by RNA polymerase and optimal transcriptional activity , 2006, Nucleic acids research.

[53]  P. Miller,et al.  Formation and Repair of Interstrand Cross‐Links in DNA , 2006 .

[54]  N. S. Dosanjh,et al.  Thiol specific oxidative stress response in Mycobacteria. , 2005, FEMS microbiology letters.

[55]  D. Chatterji,et al.  Stress Responses in Mycobacteria , 2005, IUBMB life.

[56]  Shin-Il Kim,et al.  Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship. , 2004, Clinical immunology.

[57]  Sahadevan Raman,et al.  Transcription Regulation by the Mycobacterium tuberculosis Alternative Sigma Factor SigD and Its Role in Virulence , 2004, Journal of bacteriology.

[58]  W. Bishai,et al.  The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome‐associated gene products in stationary phase and is required for full virulence , 2004, Cellular microbiology.

[59]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[60]  S. Krishna,et al.  Metal ion transport and regulation in Mycobacterium tuberculosis. , 2004, Frontiers in bioscience : a journal and virtual library.

[61]  D. Saini,et al.  DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. , 2004, Microbiology.

[62]  J. Hinds,et al.  The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA , 2003, Molecular microbiology.

[63]  Claudia Sala,et al.  Mycobacterium tuberculosis FurA Autoregulates Its Own Expression , 2003, Journal of bacteriology.

[64]  Dirk Schnappinger,et al.  Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program , 2003, The Journal of experimental medicine.

[65]  Yang Liu,et al.  Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages , 2003, The Journal of experimental medicine.

[66]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[67]  Martin Tompa,et al.  Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis , 2003, Molecular microbiology.

[68]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[69]  L. Riley,et al.  Reactive Nitrogen Intermediates Have a Bacteriostatic Effect on Mycobacterium tuberculosis In Vitro , 2002, Journal of Clinical Microbiology.

[70]  Gary K. Schoolnik,et al.  ideR, an Essential Gene in Mycobacterium tuberculosis: Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response , 2002, Infection and Immunity.

[71]  L. Rand,et al.  Definition of the Mycobacterial SOS Box and Use To Identify LexA-Regulated Genes in Mycobacterium tuberculosis , 2002, Journal of bacteriology.

[72]  C. Sala,et al.  Transcriptional Regulation of furAand katG upon Oxidative Stress inMycobacterium smegmatis , 2001, Journal of bacteriology.

[73]  John Chan,et al.  Tuberculosis: Latency and Reactivation , 2001, Infection and Immunity.

[74]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[75]  C. Nathan,et al.  Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  H. Su,et al.  The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  C. Barry,et al.  Iron Acquisition and Metabolism by Mycobacteria , 1999, Journal of bacteriology.

[78]  V. Abratt,et al.  Involvement of the N- and C-terminal domains of Mycobacterium tuberculosis KatG in the protection of mutant Escherichia coli against DNA-damaging agents. , 1999, Microbiology.

[79]  C. Walsh,et al.  Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. , 1998, Chemistry & biology.

[80]  V. Deretic,et al.  Oxidative Stress Response and Characterization of theoxyR-ahpC and furA-katG Loci inMycobacterium marinum , 1998, Journal of bacteriology.

[81]  J. W. Little Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. , 1991, Biochimie.

[82]  Qian-zhong Li,et al.  Non-coding RNA identification based on topology secondary structure and reading frame in organelle genome level. , 2016, Genomics.

[83]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[84]  Dimitrios Galaris,et al.  Oxidative stress and iron homeostasis: mechanistic and health aspects. , 2008, Critical reviews in clinical laboratory sciences.

[85]  R.,et al.  Involvement of the Nand C-terminal domains of Mycobacterium tuberculosis KatG in the protection of mutant Escherichia coli against DNA-damaging agents , 2008 .

[86]  Alain L. Gervais,et al.  Identification of mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. , 2007, Journal of bacteriology.

[87]  G. Schoolnik,et al.  Regulation of the Mycobacterium tuberculosis PE/PPE genes. , 2004, Tuberculosis.

[88]  M. Dinauer,et al.  Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. , 1997, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.