A Quality-Driven Ensemble Approach to Automatic Model Selection in Clustering

A fundamental limitation of the data clustering task is that it has an inherent, ill-defined model selection problem: the choice of a clustering technique also implies some a-priori decision on cluster geometry. In this work we explore the combined use of two different clustering paradigms and their combination by means of an ensemble technique. Mixing coefficients are computed on the basis of partition quality, so that the ensemble is automatically tuned so as to give more weight to the best-performing (in terms of the selected quality indices) clustering method.

[1]  Francesco Masulli,et al.  Soft transition from probabilistic to possibilistic fuzzy clustering , 2006, IEEE Transactions on Fuzzy Systems.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[4]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[5]  Igor Fischer,et al.  New Methods for Spectral Clustering. , 2004 .

[6]  Michael I. Jordan,et al.  Learning Spectral Clustering , 2003, NIPS.

[7]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[8]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[10]  Ana L. N. Fred,et al.  Data clustering using evidence accumulation , 2002, Object recognition supported by user interaction for service robots.

[11]  Plamen Angelov,et al.  Data density based clustering , 2014, 2014 14th UK Workshop on Computational Intelligence (UKCI).

[12]  Martin Ester,et al.  Density‐based clustering , 2019, WIREs Data Mining Knowl. Discov..

[13]  Fan Chung Graham,et al.  Spectral Clustering of Graphs with General Degrees in the Extended Planted Partition Model , 2012, COLT.

[14]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[16]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[17]  Palma Blonda,et al.  A survey of fuzzy clustering algorithms for pattern recognition. I , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Meirav Galun,et al.  Fundamental Limitations of Spectral Clustering , 2006, NIPS.

[19]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[20]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[21]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[23]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[24]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[25]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[26]  Adam Weintrit,et al.  Methods and Algorithms , 2011 .