Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries

A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids described using either atomistic or coarse-grained force fields. During a short simulation, the interactions between the protein(s) and lipids are gradually switched on using a soft-core van der Waals potential. We validate the method on a range of membrane proteins and determine the optimal soft-core parameters required to insert membrane proteins. Since all of the major biomolecular codes include soft-core van der Waals potentials, no additional code is required to apply this method. A tutorial is included in the Supporting Information.

[1]  Helgi I Ingólfsson,et al.  Lipid organization of the plasma membrane. , 2014, Journal of the American Chemical Society.

[2]  K. Tai,et al.  The selectivity of K+ ion channels: testing the hypotheses. , 2008, Biophysical journal.

[3]  Daniel L. Parton,et al.  Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. , 2011, Biophysical journal.

[4]  P. Loll,et al.  The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1 , 1994, Nature.

[5]  B. Shoichet,et al.  Soft docking and multiple receptor conformations in virtual screening. , 2004, Journal of medicinal chemistry.

[6]  Daniel L. Parton,et al.  Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza A Virion , 2015, Structure.

[7]  Rommie E. Amaro,et al.  LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry , 2014, PLoS Comput. Biol..

[8]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[9]  L. Shen,et al.  Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. , 1997, Biophysical journal.

[10]  Peter V Coveney,et al.  A computational protocol for the integration of the monotopic protein prostaglandin H2 synthase into a phospholipid bilayer. , 2006, Biophysical journal.

[11]  Maarten G. Wolf,et al.  g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation , 2010, J. Comput. Chem..

[12]  Michael R Shirts,et al.  Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. , 2011, The Journal of chemical physics.

[13]  Phillip J Stansfeld,et al.  Molecular simulation approaches to membrane proteins. , 2011, Structure.

[14]  Phillip J Stansfeld,et al.  From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. , 2011, Journal of chemical theory and computation.

[15]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[16]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[17]  E. Castellano,et al.  Functional specificity of ras isoforms: so similar but so different. , 2011, Genes & cancer.

[18]  P. Biggin,et al.  Molecular dynamics simulations of membrane proteins. , 2008, Methods in molecular biology.

[19]  Syma Khalid,et al.  Coarse-grained MD simulations of membrane protein-bilayer self-assembly. , 2008, Structure.

[20]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[21]  Siewert J. Marrink,et al.  Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. , 2009, Physical chemistry chemical physics : PCCP.

[22]  Vytautas Gapsys,et al.  New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[23]  David L Mobley,et al.  Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. , 2007, The Journal of chemical physics.

[24]  Björn Sommer,et al.  Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools , 2013, Computational and structural biotechnology journal.

[25]  D. Tieleman,et al.  Molecular structure of membrane tethers. , 2012, Biophysical journal.

[26]  M. Sansom,et al.  The interaction of phospholipase A2 with a phospholipid bilayer: coarse-grained molecular dynamics simulations. , 2008, Biophysical journal.

[27]  Siewert J Marrink,et al.  Transmembrane helices can induce domain formation in crowded model membranes. , 2012, Biochimica et biophysica acta.

[28]  M. Sansom,et al.  Interactions of Phosphatase and Tensin Homologue (PTEN) Proteins with Phosphatidylinositol Phosphates: Insights from Molecular Dynamics Simulations of PTEN and Voltage Sensitive Phosphatase , 2014, Biochemistry.

[29]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[30]  Jed W. Pitera,et al.  A Comparison of Non-Bonded Scaling Approaches for Free Energy Calculations , 2002 .

[31]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[32]  M. Sansom,et al.  NRas slows the rate at which a model lipid bilayer phase separates† †Electronic supplementary information (ESI) available: See DOI: 10.1039/c3fd00131h Click here for additional data file. , 2014, Faraday discussions.

[33]  Christian Kandt,et al.  Setting up and running molecular dynamics simulations of membrane proteins. , 2007, Methods.

[34]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[35]  Martin B Ulmschneider,et al.  Properties of integral membrane protein structures: Derivation of an implicit membrane potential , 2005, Proteins.

[36]  R. Pastor,et al.  Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers. , 2008, Biophysical journal.

[37]  Peter V Coveney,et al.  Monotopic enzymes and lipid bilayers: a comparative study. , 2007, Biochemistry.

[38]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[39]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[40]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[42]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[43]  M. Javanainen Universal Method for Embedding Proteins into Complex Lipid Bilayers for Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[44]  Benoît Roux,et al.  The binding of antibiotics in OmpF porin. , 2013, Structure.

[45]  S. Wood,et al.  The crystal structure of the H48Q active site mutant of human group IIA secreted phospholipase A2 at 1.5 A resolution provides an insight into the catalytic mechanism. , 2002, Biochemistry.

[46]  René Staritzbichler,et al.  GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations. , 2011, Journal of chemical theory and computation.

[47]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[48]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[49]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[50]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[51]  Mark S. P. Sansom,et al.  Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes , 2013, PLoS Comput. Biol..

[52]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[53]  Mark S.P. Sansom,et al.  Molecular simulations and biomembranes : from biophysics to function , 2010 .

[54]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[55]  Bert L. de Groot,et al.  Computational analysis of local membrane properties , 2013, Journal of Computer-Aided Molecular Design.

[56]  John F. Nagle,et al.  Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains , 2006, The Journal of Membrane Biology.

[57]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[58]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[59]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[60]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[61]  Joseph E. Goose,et al.  Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of large membrane systems. , 2014, Faraday discussions.

[62]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.