The chemical control of biofouling in industrial water systems

Oxidising and non-oxidising biocides are commonly used in an attempt to control biofouling in industrial water systems. Many of these programmes, however, fail due to the incorrect selection and application of these chemical compounds. Knowledge of the organisms to be eliminated and system hydraulics are important operational parameters in ensuring the successful application of chemical control programmes. A further complicating factor is the build up of bacterial resistance to many of these compounds. One way of limiting resistance is the alteration of oxidising and non-oxidising biocides at the correct miminum inhibitory concentration and using these in combination with surface active compounds to dislodge any biofilm. A variety of surface monitoring techniques are in use in order to monitor the success of biofouling control programmes. Unfortunately none of these techniques are ideal and results have to be considered very carefully.

[1]  W. P. Iverson,et al.  Microbial Corrosion of Metals , 1987 .

[2]  Jones Mv,et al.  Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. , 1989, Microbios.

[3]  T. E. Cloete,et al.  The reaction of bacterial cultures to oxidising water treatment biocides , 1995 .

[4]  Zbigniew Lewandowski,et al.  Role of sulfate‐reducing bacteria in corrosion of mild steel: A review , 1995 .

[5]  J. Lawrence,et al.  Microbial exopolymers provide a mechanism for bioaccumulation of contaminants , 1994, Microbial Ecology.

[6]  K. Cooksey,et al.  Biofilms and microbial fouling , 1983 .

[7]  G. Shand,et al.  Antibody response to acute Pseudomonas aeruginosa infection in a burn wound , 1985 .

[8]  T. E. Cloete,et al.  Resistance of bacteria from cooling waters to bactericides , 1991, Journal of Industrial Microbiology.

[9]  H. Rossmoore,et al.  The effect of fifteen biocides on formaldehyde-resistant strains ofPseudomonas aeruginosa , 1986, Journal of Industrial Microbiology.

[10]  K. Wallhäusser Praxis der Sterilisation - Desinfektion - Konservierung - Keimidentifizierung - Betriebshygiene , 1988 .

[11]  T. E. Cloete,et al.  The use of planktonic bacterial populations in open and closed recirculating water cooling systems for the evaluation of biocides , 1989 .

[12]  J. K. Hurst,et al.  Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Hamilton,et al.  Sulphate-reducing bacteria and anaerobic corrosion. , 1985, Annual review of microbiology.

[14]  Dawood,et al.  Corrosion‐enhancing potential of Shewanella putrefaciens isolated from industrial cooling waters , 1998 .

[15]  J. Costerton,et al.  Bacterial biofilms in nature and disease. , 1987, Annual review of microbiology.

[16]  R. G. Eagon,et al.  The mechanism of action of hexahydro-1,3,5-triethyl-s-triazine , 1986, Journal of Industrial Microbiology.

[17]  M. Fletcher,et al.  Bacterial Adhesion , 1985, Springer US.

[18]  T. E. Cloete,et al.  Practical aspects of biofouling control in industrial water systems , 1992 .

[19]  F. W. Adair,et al.  Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. , 1969, Applied microbiology.

[20]  A. D. Russell,et al.  Bacterial uptake of 14C-chlorhexidine diacetate and 14C-benzyl alcohol and the influence of phenoxyethanol and azolectin: studies with gram-negative bacteria. , 1992, Microbios.

[21]  M. R. Brown,et al.  Influence of Growth Rate and Nutrient Limitation on the Gross Cellular Composition of Pseudomonas aeruginosa and Its Resistance to 3- and 4-Chlorophenol , 1978, Journal of bacteriology.

[22]  T. Ford,et al.  The Ecology of Microbial Corrosion , 1990 .

[23]  B. Hall,et al.  Spontaneous point mutations that occur more often when advantageous than when neutral. , 1990, Genetics.

[24]  J. B. Stephenson Resistance of Pseudomonas aeruginosa. , 1969, Lancet.

[25]  L. Young-Bandala,et al.  An innovative method for monitoring microbiological deposits in pulp and paper mills , 1987 .

[26]  H. Rossmoore,et al.  Applications and mode of action of formaldehyde condensate biocides. , 1988, Advances in applied microbiology.

[27]  J. Lawrence,et al.  Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments , 1987, Microbial Ecology.

[28]  L. Freedman Using chemicals for biological control in cooling water systems: some practical considerations , 1979 .

[29]  P. Gilbert,et al.  Growth inhibitory and biocidal activity of some isothiazolone biocides. , 1990, The Journal of applied bacteriology.

[30]  Armin Fiechter,et al.  Biosurfactants: moving towards industrial application , 1992 .

[31]  C. Gaylarde Advances in detection of microbiologically induced corrosion , 1990 .

[32]  T. Franklin,et al.  Biochemistry of Antimicrobial Action , 1975, Springer US.

[33]  K. Pedersen,et al.  Method for Studying Microbial Biofilms in Flowing-Water Systems , 1982, Applied and environmental microbiology.

[34]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[35]  K. Douglas,et al.  Chemical reactivity of some isothiazolone biocides. , 1990, The Journal of applied bacteriology.

[36]  H. Nishimura,et al.  Mechanism of resistance to benzalkonium chloride by Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[37]  H. Hoppe Attachment of Bacteria: Advantage or Disadvantage for Survival in the Aquatic Environment , 1984 .

[38]  J. Parr Industrial biocide formulation - the way forward. , 1990 .

[39]  T. E. Cloete,et al.  Evaluation of nutrient agars for the enumeration of viable aerobic heterotrophs in cooling water , 1992 .

[40]  A. D. Russell,et al.  Mechanisms of bacterial resistance to biocides , 1990 .

[41]  R. Atlas,et al.  Microbial Ecology: Fundamentals and Applications. , 1982 .

[42]  S. D. Strauss,et al.  Cooling-water treatment for control of scaling, fouling, corrosion , 1984 .

[43]  A. D. Russell,et al.  Understanding antibacterial action and resistance , 1990 .

[44]  A. Summers Organization, expression, and evolution of genes for mercury resistance. , 1986, Annual review of microbiology.

[45]  P. Broxton,et al.  Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. , 1984, The Journal of applied bacteriology.

[46]  William G. Characklis,et al.  Dynamics of biofilm processes , 1982 .

[47]  Dennis Allsopp,et al.  Introduction to biodeterioration , 1986 .

[48]  T. E. Cloete,et al.  Adaptation of Pseudomonas aeruginosa to 2,2'-methylenebis (4-chlorophenol). , 1993, The Journal of applied bacteriology.

[49]  K. Fitzgerald,et al.  Bacterial uptake of 14C-chlorhexidine diacetate and the influence of phenoxyethanol : studies with Gram-positive bacteria , 1992 .

[50]  P. Gilbert,et al.  Isothiazolone biocides: enzyme-inhibiting pro-drugs , 1991 .

[51]  J. Costerton,et al.  Observations of fouling biofilm formation. , 1981, Canadian journal of microbiology.

[52]  F. W. Adair,et al.  Resistance of Pseudomonas to quaternary ammonium compounds. II. Cross-resistance characteristics of a mutant of Pseudomonas aeruginosa. , 1971, Applied microbiology.

[53]  Alexander T. Florence,et al.  Surfactant Systems: Their chemistry, pharmacy and biology , 1983 .