Technical Challenges and Progress in Fluidized Bed Chemical Vapor Deposition of Polysilicon

Abstract Various methods for production of polysilicon have been proposed for lowering the production cost and energy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product quality and output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design of a FBCVD reactor.

[1]  J. Couderc,et al.  Silicon deposition from silane or disilane in a fluidized bed—Part I: Experimental study , 1995 .

[2]  M. Swihart,et al.  Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods , 2004 .

[3]  K. Tachibana,et al.  A Numerical Study on Gaseous Reactions in Silane Pyrolysis , 1987 .

[4]  H. de Lasa,et al.  Modeling a Silicon CVD Spouted Bed Pilot Plant Reactor , 2006 .

[5]  R. Gordon,et al.  Gas‐phase kinetics in the atmospheric pressure chemical vapor deposition of silicon from silane and disilane , 1990 .

[6]  T. Kojima,et al.  Development of numerical model for reactions in fluidized bed grid zone -application to chemical vapor deposition of polycrystalline silicon by monosilane pyrolysis- , 1990 .

[7]  D. Crippa,et al.  Chapter 1 CVD technologies for silicon: A quick survey , 2001 .

[8]  Daniel M. Kammen,et al.  Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? , 2010 .

[9]  Erik Stensrud Marstein,et al.  Development of fluidized bed reactors for silicon production , 2010 .

[10]  J. Couderc,et al.  Silicon deposition from silane or disilane in a fluidized bed—Part II: Theoretical analysis and modeling , 1995 .

[11]  L. Mleczko,et al.  Optimization of Reaction Conditions in a Fluidized‐Bed for Silane Pyrolysis , 2008 .

[12]  M. Swihart,et al.  MODELING THE NUCLEATION KINETICS AND AEROSOL DYNAMICS OF PARTICLE FORMATION DURING CVD OF SILICON FROM SILANE , 1998 .

[13]  S. Pannala,et al.  Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed , 2009 .

[14]  F. Kruis,et al.  Homogeneous nucleation of silicon , 1994 .

[15]  Anand Prakash,et al.  A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems , 2003 .

[16]  A. Onischuk,et al.  Chemical composition and bond structure of aerosol particles of amorphous hydrogenated silicon forming from thermal decomposition of silane , 1997 .

[17]  W. Rieger,et al.  Mechanism of Cluster Formation in a Clean Silane Discharge , 1993 .

[18]  Madhava Syamlal,et al.  Silicon CVD on powders in fluidized bed: Experimental and multifluid Eulerian modelling study , 2007 .

[19]  A. Kjekshus,et al.  From monosilane to crystalline silicon, Part I: Decomposition of monosilane at 690-830 K and initial pressures 0.1-6.6 MPa in a free-space reactor , 2005 .

[20]  James E. Maslar,et al.  An Investigation of Particle Dynamics in a Rotating Disk Chemical Vapor Deposition Reactor , 2003 .

[21]  J. Cahn,et al.  Experimental test of classical nucleation theory in a liquid-liquid miscibility gap system , 1973 .

[22]  W. Breiland,et al.  Gas‐phase silicon atoms in silane chemical vapor deposition: Laser‐excited fluorescence measurements and comparisons with model predictions , 1986 .

[23]  Nicolas Reuge,et al.  Multifluid Eulerian modelling of a silicon Fluidized Bed Chemical Vapor Deposition process: Analysis of various kinetic models , 2009 .

[24]  Elspeth Thomson,et al.  China's Nuclear Energy in Light of the Disaster in Japan , 2011 .

[25]  D. Kremer,et al.  A Numerical Investigation of the Effects of Gas-Phase Particle Formation on Silicon Film Deposition from Silane , 2003 .

[26]  Pratim Biswas,et al.  Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II: Application to CVD reactors , 2004 .

[27]  Michael G. Mauk Silicon solar cells: Physical metallurgy principles , 2003 .

[28]  S. Campbell,et al.  An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane , 2003 .

[29]  Michael E. Coltrin,et al.  Comparisons between a gas‐phase model of silane chemical vapor deposition and laser‐diagnostic measurements , 1986 .

[30]  G. C. Hsu,et al.  Fines in Fluidized Bed Silane Pyrolysis , 1984 .

[31]  W. Breiland,et al.  Laser-Induced Fluorescence Measurements and Kinetic Analysis of Si Atom Formation in a Rotating Disk Chemical Vapor Deposition Reactor , 1994 .

[32]  A. Onischuk,et al.  On the pathways of aerosol formation by thermal decomposition of silane , 1997 .

[33]  M. Swihart,et al.  Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane , 1999 .

[34]  B. Erik Ydstie,et al.  Size distribution modeling for fluidized bed solar-grade silicon production☆ , 2006 .

[35]  A. Onischuk,et al.  Analysis of Hydrogen in Aerosol Particles of a‐Si: H Forming during the Pyrolysis of Silane , 1994 .

[36]  D. Blackwood,et al.  The effect of etching temperature on the photoluminescence emitted from, and the morphology of, p-type porous silicon , 2003 .

[37]  L. P. Hunt,et al.  Handbook of Semiconductor Silicon Technology , 2007 .

[38]  John Houseman,et al.  Silicon particle growth in a fluidized‐bed reactor , 1987 .

[39]  S. Pannala,et al.  Multifluid Eulerian modeling of dense gas–solids fluidized bed hydrodynamics: Influence of the dissipation parameters , 2008 .

[40]  J. Nishizawa,et al.  Gas-phase nucleation during the thermal decomposition of silane in hydrogen , 1976 .

[41]  A. Onischuk,et al.  Studying of silane thermal decomposition mechanism , 1998 .

[42]  Toshinori Kojima,et al.  CHEMICAL VAPOR DEPOSITION AND HOMOGENEOUS NUCLEATION IN MONOSILANE PYROLYSIS WITHIN INTERPARTICLE SPACES -APPLICATION OF FINES FORMATION ANALYSIS TO FLUIDIZED BED CVD- , 1988 .

[43]  A. Onischuk,et al.  Analysis of hydrogen and paramagnetic defects in aSi: H aerosol particles. Resulting from thermal decomposition of silane , 1996 .

[44]  Milorad P. Dudukovic,et al.  Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors: silicon from silane , 1986 .

[45]  M. Swihart,et al.  Numerical Modeling of Gas‐Phase Nucleation and Particle Growth during Chemical Vapor Deposition of Silicon , 2000 .