An integrated fuzzy cells-classifier

This paper introduces a genetic algorithm able to combine different classifiers based on different distance functions. The use of a genetic algorithm is motivated by the fact that the combination phase is based on the optimization of a vote strategy. The method has been applied to the classification of four types of biological cells, results show an improvement of the recognition rate using the genetic algorithm combination strategy compared with the recognition rate of each single classifier.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[3]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[4]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[5]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Vito Di Gesù,et al.  Clustering Algorithms for MRI , 1991, MIE.

[8]  Giorgio Valentini,et al.  Ensembles of Learning Machines , 2002, WIRN.

[9]  Naonori Ueda,et al.  Optimal Linear Combination of Neural Networks for Improving Classification Performance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Anil K. Jain,et al.  A Clustering Performance Measure Based on Fuzzy Set Decomposition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[12]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[13]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994 .

[14]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[15]  Ronald R. Yager A Foundation for a Theory of Possibility , 1980, Cybern. Syst..

[16]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[17]  Vito Di Gesù,et al.  Symmetry in Computer Vision , 2002 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[20]  M. Marinaro,et al.  Visual Attention Mechanisms , 2002, Springer US.

[21]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[22]  Vito Di Gesù,et al.  Integrated fuzzy clustering , 1994 .

[23]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Mohan Trivedi,et al.  Segmentation of a Thematic Mapper Image Using the Fuzzy c-Means Clusterng Algorthm , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Ewart R. Carson,et al.  Lecture Notes in Medical Informatics , 1991 .

[26]  Vito Di Gesù,et al.  Classification based on iterative object symmetry transform , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[27]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[28]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[29]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .