Identifying risk-averse low-diameter clusters in graphs with stochastic vertex weights

In this work, we study the problem of detecting risk-averse low-diameter clusters in graphs. It is assumed that the clusters represent k-clubs and that uncertain information manifests itself in the form of stochastic vertex weights whose joint distribution is known. The goal is to find a k-club of minimum risk contained in the graph. A stochastic programming framework that is based on the formalism of coherent risk measures is used to quantify the risk of a cluster. We show that the selected representation of risk guarantees that the optimal subgraphs are maximal clusters. A combinatorial branch-and-bound algorithm is proposed and its computational performance is compared with an equivalent mathematical programming approach for instances with $$k=2,3,$$k=2,3, and 4.

[1]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[2]  George L. Nemhauser,et al.  A Dynamic Network Flow Problem with Uncertain Arc Capacities: Formulation and Problem Structure , 2000, Oper. Res..

[3]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[4]  Alexandre Prusch Züge,et al.  Branch and bound algorithms for the maximum clique problem under a unified framework , 2011, Journal of the Brazilian Computer Society.

[5]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[6]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[7]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[8]  P. Krokhmal Higher moment coherent risk measures , 2007 .

[9]  Maw-Shang Chang,et al.  Finding large $$k$$-clubs in undirected graphs , 2013, Computing.

[10]  Yana Morenko,et al.  On p-norm linear discrimination , 2013, Eur. J. Oper. Res..

[11]  Lawrence B. Holder,et al.  Graph-Based Data Mining , 2000, IEEE Intell. Syst..

[12]  Barrett W. Thomas,et al.  Probabilistic Traveling Salesman Problem with Deadlines , 2008, Transp. Sci..

[13]  Balabhaskar Balasundaram,et al.  Graph Theoretic Clique Relaxations and Applications , 2013 .

[14]  R. Ravi,et al.  Technical Note - Approximation Algorithms for VRP with Stochastic Demands , 2012, Oper. Res..

[15]  Alexander Vinel,et al.  Polyhedral approximations in p-order cone programming , 2014, Optim. Methods Softw..

[16]  R. Rockafellar,et al.  The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .

[17]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[18]  Balabhaskar Balasundaram,et al.  On inclusionwise maximal and maximum cardinality k-clubs in graphs , 2012, Discret. Optim..

[19]  Pavlo A. Krokhmal,et al.  Risk optimization with p-order conic constraints: A linear programming approach , 2010, Eur. J. Oper. Res..

[20]  Stan Uryasev,et al.  Modeling and optimization of risk , 2011 .

[21]  Eduardo L. Pasiliao,et al.  On risk-averse maximum weighted subgraph problems , 2014, J. Comb. Optim..

[22]  Alexander Shapiro,et al.  The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study , 2003, Comput. Optim. Appl..

[23]  D. Kumlander,et al.  A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search , 2022, International Journal of Global Operations Research.

[24]  Arch G. Woodside,et al.  Effects of Word of Mouth Advertising on Consumer Risk Taking , 1976 .

[25]  R. Rockafellar,et al.  Generalized Deviations in Risk Analysis , 2004 .

[26]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[27]  Chris Volinsky,et al.  Network-Based Marketing: Identifying Likely Adopters Via Consumer Networks , 2006, math/0606278.

[28]  Yash P. Aneja,et al.  Maximizing residual flow under an arc destruction , 2001, Networks.

[29]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[30]  Janez Konc,et al.  An improved branch and bound algorithm for the maximum clique problem , 2007 .

[31]  Gilbert Laporte,et al.  An exact algorithm for the maximum k-club problem in an undirected graph , 1999, Eur. J. Oper. Res..

[32]  Sergiy Butenko,et al.  Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations , 2013, Computational Optimization and Applications.

[33]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[34]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[35]  James D. Laing,et al.  Coalitions and payoffs in three‐person sequential games: Initial tests of two formal models , 1973 .

[36]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[37]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[38]  Shinya Takahashi,et al.  A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique , 2010, WALCOM.

[39]  Patric R. J. Östergård,et al.  A New Algorithm for the Maximum-Weight Clique Problem , 1999, Electron. Notes Discret. Math..

[40]  Luitpold Babel,et al.  A fast algorithm for the maximum weight clique problem , 1994, Computing.

[41]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[42]  Eduardo L. Pasiliao,et al.  Critical nodes for distance‐based connectivity and related problems in graphs , 2015, Networks.

[43]  D. Iacobucci,et al.  Modeling Dyadic Interactions and Networks in Marketing , 1992 .

[44]  Christian Komusiewicz,et al.  Parameterized computational complexity of finding small-diameter subgraphs , 2012, Optim. Lett..

[45]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[46]  Sergiy Butenko,et al.  On the maximum quasi-clique problem , 2013, Discret. Appl. Math..

[47]  Egon Balas,et al.  Finding a Maximum Clique in an Arbitrary Graph , 1986, SIAM J. Comput..