Zero Mach number limit for compressible flows with periodic boundary conditions

We address the question of convergence to the incompressible Navier-Stokes equations for slightly compressible viscous flows with ill-prepared initial data and periodic boundary conditions (the case of the whole space has been studied in an earlier paper by the author). The functional setting is very close to the one used by H. Fujita and T. Kato for incompressible flows. For arbitrarily large initial data, we show that the compressible flow with small Mach number exists as long as the incompressible one does. In particular, it exists globally if the corresponding incompressible solution exists for all time. We further state a convergence result for the slightly compressible solution filtered by the group of acoustics.

[1]  J. Chemin Remarks on global existence for the incompressible Navier-Stokes system , 1992 .

[2]  I. Gallagher Applications of Schochet's methods to parabolic equations , 1998 .

[3]  B. Desjardins,et al.  Low Mach number limit of viscous compressible flows in the whole space , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  P. Lions,et al.  Incompressible Limit for Solutionsof the Isentropic Navier–Stokes Equationswith Dirichlet Boundary Conditions , 1999 .

[5]  I. Gallagher A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations , 2000 .

[6]  J. Lorenz,et al.  ALL-TIME EXISTENCE OF CLASSICAL SOLUTIONS FOR SLIGHTLY COMPRESSIBLE FLOWS , 1998 .

[7]  R. Danchin Zero Mach number limit in critical spaces for compressible Navier–Stokes equations , 2002 .

[8]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[9]  Raphaël Danchin,et al.  Global existence in critical spaces for compressible Navier-Stokes equations , 2000 .

[10]  R. Danchin Global Existence in Critical Spaces¶for Flows of Compressible¶Viscous and Heat-Conductive Gases , 2001 .

[11]  Pierre-Louis Lions,et al.  Une approche locale de la limite incompressible , 1999 .

[12]  N. Masmoudi Incompressible, inviscid limit of the compressible Navier-Stokes system , 2001 .

[13]  H. Kreiss,et al.  Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations , 1991 .

[14]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[15]  P. Fabrie,et al.  The slightly compressible Navier-Stokes equations revisited , 2001 .

[16]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[17]  R. Danchin LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES , 2001 .

[18]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[19]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[20]  D. Hoff The Zero-Mach Limit of Compressible Flows , 1998 .

[21]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[22]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[23]  P. Lions,et al.  Incompressible limit for a viscous compressible fluid , 1998 .