The role of environmental land use conflicts in soil fertility: A study on the Uberaba River basin, Brazil.

In the Uberaba River basin (state of Minas Gerais, Brazil), pastures for livestock production have invaded areas of native vegetation (Cerrado biome), while already existing pastures were invaded by crop agriculture, with an expansion of sugar cane plantations in the most recent years. In some areas of the basin, these land use changes were classified as environmental land use conflicts because the new uses were not conforming to land capability, i.e. the soil's natural use. Where the areas in conflict became dense, some soil properties have changed significantly, namely the organic matter content and the exchangeable potassium concentration, which have decreased drastically (5kg/m(3) per 10% increase in the conflict area) threatening the fertility of soil. Besides, these changes may have triggered a cascade of other environmental damages, specifically the increase of soil erosion and the degradation of water quality with negative impacts on aquatic biodiversity, related to a disruption of soil organic matter structural functions. Because half the Uberaba catchment has been considered is a state of accentuated environmental degradation, not only caused by environmental land use conflicts, conservation measures have been proposed and requested for immediate implementation across the watershed.

[1]  B. Vanlauwe,et al.  Soil organic carbon dynamics, functions and management in West African agro-ecosystems , 2007 .

[2]  E. Craswell,et al.  The role and function of organic matter in tropical soils , 2001, Nutrient Cycling in Agroecosystems.

[3]  H. G. Cândido DEGRADAÇÃO AMBIENTAL DA BACIA HIDROGRÁFICA DO RIO UBERABA - MG , 2008 .

[4]  João Paulo Moura,et al.  The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components , 2014 .

[5]  F. Pacheco,et al.  Weathering of plagioclase across variable flow and solute transport regimes , 2012 .

[6]  L. S. Sanches Fernandes,et al.  Water resources planning for a river basin with recurrent wildfires. , 2015, The Science of the total environment.

[7]  L. G. Barioni,et al.  Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation , 2016 .

[8]  K. Paustian,et al.  Payback time for soil carbon and sugar-cane ethanol , 2014 .

[9]  L. S. Sanches Fernandes,et al.  Soil losses in rural watersheds with environmental land use conflicts. , 2014, The Science of the total environment.

[10]  L. S. Sanches Fernandes,et al.  Factor weighting in DRASTIC modeling. , 2015, The Science of the total environment.

[11]  F. Pacheco,et al.  Role of hydraulic diffusivity in the decrease of weathering rates over time , 2014 .

[12]  M. K. Kondo,et al.  Indicadores físicos e químicos de qualidade de um cambissolo em diferentes usos , 2015 .

[13]  José Euclídes Stipp Paterniani,et al.  Diagnostico ambiental da bacia hidrografica do Rio Uberaba-MG , 2003 .

[14]  F. Pacheco,et al.  Impacts of land use conflicts on riverine ecosystems , 2015 .

[15]  J. A. Galbiatti,et al.  Degradação ambiental da bacia hidrográfica do rio Uberaba: uma abordagem metodológica , 2010 .

[16]  K. Daly,et al.  Identifying contrasting influences and surface water signals for specific groundwater phosphorus vulnerability. , 2016, The Science of the total environment.

[17]  J. López-Tarazón,et al.  Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. , 2016, The Science of the total environment.

[18]  P. Nowicka-Krawczyk,et al.  The cascade construction of artificial ponds as a tool for urban stream restoration - The use of benthic diatoms to assess the effects of restoration practices. , 2015, The Science of the total environment.

[19]  J. Hubbart,et al.  A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest. , 2016, The Science of the total environment.

[20]  L. S. Sanches Fernandes,et al.  Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. , 2015, The Science of the total environment.

[22]  L. S. Sanches Fernandes,et al.  Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. , 2016, The Science of the total environment.

[23]  R. Mandal Land Utilization: Theory and Practice , 1981 .

[24]  Michel Poulin,et al.  Pluri-annual sediment budget in a navigated river system: the Seine River (France). , 2015, The Science of the total environment.

[25]  J. Six,et al.  Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. , 2015, The Science of the total environment.

[26]  L. S. Sanches Fernandes,et al.  Groundwater quality in rural watersheds with environmental land use conflicts. , 2014, The Science of the total environment.

[27]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[28]  S. Reaney,et al.  Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. , 2015, The Science of the total environment.

[29]  F. Pacheco,et al.  Modeling rock weathering in small watersheds , 2014 .

[30]  Christian Wolter,et al.  Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. , 2015, The Science of the total environment.

[31]  F. Pacheco,et al.  Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds , 2012 .

[32]  M. E. C. Claessen Manual de métodos de análise de solo. , 1997 .

[33]  F. Pacheco,et al.  Anthropogenic impacts on mineral weathering: A statistical perspective , 2013 .

[34]  J. A. Galbiatti,et al.  CARACTERIZAÇÃO MORFOMÉTRICA DA BACIA DO RIO UBERABA E DETERMINAÇÃO DO USO POTENCIAL DO SOLO, UBERABA-MG , 2012, Caminhos de Geografia.

[35]  J. A. Galbiatti,et al.  Potencial de erosão da bacia do Rio Uberaba , 2010 .

[36]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[37]  Valle Júnior,et al.  Diagnóstico de áreas de risco de erosão e conflito de uso dos solos na bacia do rio Uberaba , 2008 .

[38]  Harry Edmar Schulz,et al.  Erosão e hidrossedimentologia em bacias hidrográficas , 2003 .

[39]  G. Ziv,et al.  Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications. , 2015, The Science of the total environment.

[40]  S. Fonte,et al.  Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils , 2014 .

[41]  L. S. Sanches Fernandes,et al.  Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. , 2015, The Science of the total environment.

[42]  Bruno M. Meneses,et al.  Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications. , 2015, The Science of the total environment.

[43]  L. F. Sanches Fernandes,et al.  Environmental land use conflicts: A threat to soil conservation , 2014 .

[44]  J. A. Galbiatti,et al.  Diagnóstico do Conflito de Uso e Ocupação do Solo na Bacia do Rio Uberaba , 2013 .