Robust association between vascular habitats and patient prognosis in glioblastoma: An international multicenter study

Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE).

[1]  Á. Alberich-Bayarri Imaging Biomarkers , 2020 .

[2]  Seok-Gu Kang,et al.  Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. , 2018, Radiology.

[3]  Luis Martí-Bonmatí,et al.  Improving the estimation of prognosis for glioblastoma patients by MR based hemodynamic tissue signatures , 2018, NMR in biomedicine.

[4]  Luis Martí-Bonmatí,et al.  Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. , 2018, Radiology.

[5]  Baris Turkbey,et al.  Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI , 2017, Scientific Reports.

[6]  T. Petrova,et al.  Microenvironmental regulation of tumour angiogenesis , 2017, Nature Reviews Cancer.

[7]  S. McLachlan,et al.  Life beyond a diagnosis of glioblastoma: a systematic review of the literature , 2017, Journal of Cancer Survivorship.

[8]  H. Urbach,et al.  Mesoscopic imaging of glioblastomas: Are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? , 2017, The neuroradiology journal.

[9]  Steven D Chang,et al.  Magnetic resonance perfusion image features uncover an angiogenic subgroup of glioblastoma patients with poor survival and better response to antiangiogenic treatment , 2016, Neuro-oncology.

[10]  Stuart A. Taylor,et al.  Imaging biomarker roadmap for cancer studies , 2016, Nature Reviews Clinical Oncology.

[11]  Carole Dufouil,et al.  Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[13]  A. Mishra,et al.  Glioma Recurrence Versus Radiation Necrosis: Single-Session Multiparametric Approach Using Simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI , 2016, Clinical nuclear medicine.

[14]  Lei Xing,et al.  Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. , 2016, Radiology.

[15]  M. McLean,et al.  Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas , 2015, Journal of magnetic resonance imaging : JMRI.

[16]  G. Bergers,et al.  Glioblastoma: Defining Tumor Niches. , 2015, Trends in cancer.

[17]  Deric M. Park,et al.  The Evidence of Glioblastoma Heterogeneity , 2015, Scientific Reports.

[18]  Thomas E Yankeelov,et al.  Methods and challenges in quantitative imaging biomarker development. , 2015, Academic radiology.

[19]  Dafna Ben Bashat,et al.  Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: a longitudinal MRI study. , 2014, European journal of radiology.

[20]  Luke Macyszyn,et al.  Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. , 2014, Radiology.

[21]  Scott N. Hwang,et al.  Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. , 2014, Radiology.

[22]  Michael L Mumert,et al.  Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. , 2014, Neuro-oncology.

[23]  D. Cheresh,et al.  Tumor angiogenesis: molecular pathways and therapeutic targets , 2011, Nature Medicine.

[24]  J. Raizer,et al.  Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging--pilot study. , 2010, Radiology.

[25]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[26]  T. Hirai,et al.  Prognostic Value of Perfusion MR Imaging of High-Grade Astrocytomas: Long-Term Follow-Up Study , 2008, American Journal of Neuroradiology.

[27]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[28]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[29]  Tyrone D. Cannon,et al.  Reliability of brain volumes from multicenter MRI acquisition: A calibration study , 2004, Human brain mapping.

[30]  Glyn Johnson,et al.  Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. , 2002, Radiology.