Relatively Free Profinite Monoids: An Introduction and Examples

[1]  Peter M. Higgins An algebraic proof that pseudovarieties are defined by pseudoidentities , 1990 .

[2]  Jorge Almeida,et al.  The algebra of implicit operations , 1989 .

[3]  P. Zalesskii,et al.  SUBGROUPS OF PROFINITE GROUPS ACTING ON TREES , 1989 .

[4]  Jorge Almeida,et al.  On regular implicit operations , 1993 .

[5]  Jean-Éric Pin,et al.  On the Varieties of Languages Associated with Some Varieties of Finite Monoids with Commuting Idempotents , 1990, Inf. Comput..

[6]  Jorge Almeida,et al.  Some pseudovariety joins involving the pseudovariety of finite groups , 1988 .

[7]  Christopher J. Ash,et al.  Inevitable Graphs: a Proof of the Type II Conjecture and some Related Decision Procedures , 1991, Int. J. Algebra Comput..

[8]  Jorge Almeida Equations for pseudovarieties , 1988, Formal Properties of Finite Automata and Applications.

[9]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[10]  Luis Ribes,et al.  On The Profinite Topology on a Free Group , 1993 .

[11]  Pascal Weil,et al.  Reduced Factorizations in Free Profinite Groups and Join Decompositions of Pseudovarieties , 1994, Int. J. Algebra Comput..

[12]  Jorge Almeida,et al.  Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon , 1991 .

[13]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[14]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[15]  Implicit Operations on Certain Classes of Semigroups , 1987 .

[16]  Luis Ribes,et al.  Profinite groups and boolean graphs , 1978 .