Nichtlineare adaptive Regelung eines unbemannten Fluggerätes

Eine zentrale Anforderung an unbemannte Fluggerate ist die autonome Durchfuhrung der geplanten Flugmission. Zur Erreichung dieses Zieles muss das Regelungssystem des Flugzeuges ein hohes Mas an Robustheit gegenuber Modell- und Parameterunsicherheiten sowie die Anpassungsfahigkeit aufweisen, um Stor- und Ausfallsituationen meistern zu konnen. Ferner muss die Einhaltung von Betriebsgrenzen gewahrleistet sein. Es wird ein auf nichtlinearer dynamischer Inversion beruhendes adaptives Regelungskonzept vorgestellt, das die genannten Anspruche erfullt und das den Flug auf komplexen, dreidimensionalen Bahnen mit hoher Bandbreite und groser Fuhrungsgenauigkeit ermoglicht. Das System erlaubt die volle Ausnutzung der Flugleistungen der Konfiguration und berucksichtigt insbesondere auch Sattigungen in Ruderausschlagen und -stellraten. Der Nachweis der Funktionsfahigkeit erfolgt anhand nichtlinearer Simulationen unter Verwendung eines komplexen Simulationsmodells.

[1]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[2]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[3]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[4]  John H. Blakelock,et al.  Automatic control of aircraft and missiles , 1965 .

[5]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[6]  Frank L. Lewis,et al.  Neural Network Control Of Robot Manipulators And Non-Linear Systems , 1998 .

[7]  Robert C. Nelson,et al.  Flight Stability and Automatic Control , 1989 .

[8]  Charles Hall,et al.  RLV Sliding Mode Control System Using Sliding Mode Observers and Gain Adaptation , 2003 .

[9]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[10]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[11]  Marios M. Polycarpou,et al.  Backstepping Flight Control using On-Line Function Approximation , 2003 .

[12]  George Meyer,et al.  Aircraft automatic flight control system with model inversion , 1987 .

[13]  Kevin R. Scalera A Comparison of Control Allocation Methods for the F-15 ACTIVE Research Aircraft Utilizing Real-Time Piloted Simulations , 1999 .

[14]  Ola Härkegård,et al.  Flight Control Design using Backstepping , 2001 .

[15]  Eric N. Johnson,et al.  Neural network adaptive control of systems with input saturation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[16]  D. Naidu,et al.  Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: A Survey , 2001 .

[17]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[18]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[19]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[20]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[21]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[22]  A. Lambregts Integrated system design for flight and propulsion control using total energy principles , 1983 .

[23]  Florian Holzapfel,et al.  PC BASED CONFIGURABLE AIRCRAFT SIMULATION ENVIRONMENT FOR DYNAMICS AND CONTROL ANALYSIS , 2001 .

[24]  Nguyen X Vinh,et al.  Flight Mechanics of High-Performance Aircraft , 1995 .

[25]  Anthony J. Calise,et al.  Development of a Reconfigurable Flight Control Law for the X-36 Tailless Fighter Aircraft , 2000 .

[26]  G. Albers,et al.  Eyes Wide Open , 2000 .

[27]  Anthony J. Calise,et al.  Experimental results on adaptive output feedback control using a laboratory model helicopter , 2002, IEEE Transactions on Control Systems Technology.

[28]  Florian Holzapfel,et al.  LOW-COST PC BASED FLIGHT SIMULATOR FOR EDUCATION AND RESEARCH , 2002 .

[29]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[30]  Barnes W. McCormick,et al.  Aerodynamics, Aeronautics and Flight Mechanics , 1979 .

[31]  J. L. Willems,et al.  Stabilität dynamischer Systeme , 1973 .

[32]  Johann Schumann,et al.  Toward V&V of neural network based controllers , 2002, WOSS '02.

[33]  Kevin A. Wise,et al.  Flight testing of a reconfigurable flight control law on the X-36 tailless fighter aircraft , 2000 .

[34]  John Hodgkinson,et al.  Aircraft Handling Qualities , 1999 .

[35]  Mark David Nelson A Comparison of Two Methods Used to Deal with Saturation of Multiple, Redundant Aircraft Control Effectors , 2002 .

[36]  R. Rysdyk,et al.  Nonlinear Adaptive Flight Path and Speed Control Using Energy Principles , 2002 .

[37]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[38]  Otto Föllinger,et al.  Regelungstechnik : Einführung in die Methoden und ihre Anwendung , 1984 .

[39]  A. Isidori Nonlinear Control Systems , 1985 .

[40]  A. Page,et al.  A CLOSED-LOOP COMPARISON OF CONTROL ALLOCATION METHODS , 2000 .

[41]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[42]  A. A. Lambregts Functional integration of vertical flight path and speed control using energy principles , 1984 .

[43]  Design of Robust Dynamic Inversion Control Laws using Multi-Objective Optimization , 2001 .

[44]  A. Lambregts Vertical flight path and speed control autopilot design using total energy principles , 1983 .

[45]  Kevin A. Wise,et al.  DIRECT ADAPTIVE RECONFIGURABLE FLIGHT CONTROL FOR A TAILLESS ADVANCED FIGHTER AIRCRAFT , 1999 .

[46]  David B. Doman,et al.  IMPROVING CONTROL ALLOCATION ACCURACY FOR NONLINEAR AIRCRAFT DYNAMICS , 2002 .

[47]  Kyun K. Lee,et al.  Some numerical aspects of approximate linearization of single input non-linear systems , 1993 .

[48]  Louis V. Schmidt,et al.  Introduction to Aircraft Flight Dynamics , 1998 .

[49]  J. B. Russell Performance And Stability Of Aircraft , 1996 .

[50]  Gunther Michalka,et al.  IMPROVING TRANSIENT PERFORMANCE OF DYNAMIC INVERSION MISSILE AUTOPILOT BY USE OF BACKSTEPPING , 2002 .

[51]  Eric N. Johnson,et al.  REUSABLE LAUNCH VEHICLE ADAPTIVE GUIDANCE AND CONTROL USING NEURAL NETWORKS , 2001 .

[52]  T. Teichmann,et al.  Dynamics of Flight: Stability and Control , 1959 .

[53]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[54]  Anthony J. Calise,et al.  FLIGHT EVALUATION OF ADAPTIVE HIGH-BANDWIDTH CONTROL METHODS FOR UNMANNED HELICOPTERS , 2002 .

[55]  Seungjae Lee,et al.  Direct adaptive reconfigurable control of a tailless fighter aircraft , 1998 .

[56]  Thomas Kailath,et al.  Linear Systems , 1980 .

[57]  R. Howard Dynamics of Flight: Stability and Control; Third Edition , 1997 .

[58]  Visakan Kadirkamanathan,et al.  Functional Adaptive Control , 2001 .

[59]  S. Bharadwaj,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[60]  Hans-Dieter Joos,et al.  Application of an Optimization-based Design Process for Robust Autoland Control Laws , 2001 .

[61]  Eric N. Johnson,et al.  Adaptive Flight Control for an Autonomous Unmanned Helicopter , 2002 .

[62]  Duane T. McRuer,et al.  Aircraft Dynamics and Automatic Control , 1973 .

[63]  Kurt Meyberg,et al.  Höhere Mathematik 1 , 1990 .

[64]  Eric N. Johnson,et al.  FEEDBACK LINEARIZATION WITH NEURAL NETWORK AUGMENTATION APPLIED TO X-33 ATTITUDE CONTROL , 2000 .

[65]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[66]  Eric N. Johnson,et al.  Limited authority adaptive flight control , 2000 .

[67]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.