The prognostic value of combined TGF-β1 and ELF in hepatocellular carcinoma

[1]  P. ten Dijke,et al.  Targeting TGF-β Signaling in Cancer. , 2017, Trends in cancer.

[2]  Hong-Yang Wang,et al.  Prognostic significance of cytoskeleton‐associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma , 2014, Cancer.

[3]  J. Zarzyńska,et al.  Two Faces of TGF-Beta1 in Breast Cancer , 2014, Mediators of inflammation.

[4]  I. Tentes,et al.  Overall survival and clinicopathological characteristics of patients with breast cancer in relation to the expression pattern of HER-2, IL-6, TNF-α and TGF-β1. , 2013, Asian Pacific journal of cancer prevention : APJCP.

[5]  J. Ajani,et al.  Loss of TGF-β adaptor β2SP activates notch signaling and SOX9 expression in esophageal adenocarcinoma. , 2013, Cancer research.

[6]  H. Putter,et al.  The prognostic role of TGF-β signaling pathway in breast cancer patients. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[7]  B. Kos-Kudła,et al.  Transforming growth factor beta1 (TGFbeta1) in physiology and pathology , 2013 .

[8]  Fang Liu,et al.  β‐2 Spectrin is involved in hepatocyte proliferation through the interaction of TGFβ/Smad and PI3K/AKT signalling , 2012, Liver international : official journal of the International Association for the Study of the Liver.

[9]  Kohei Miyazono,et al.  Biology of transforming growth factor-β signaling. , 2011, Current pharmaceutical biotechnology.

[10]  Randy L. Johnson,et al.  Loss of transforming growth factor β adaptor protein β‐2 spectrin leads to delayed liver regeneration in mice , 2011, Hepatology.

[11]  E. Reddy,et al.  Transforming growth factor‐β adaptor, β2‐spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer , 2011, Hepatology.

[12]  Jenny G. Parvani,et al.  Noncanonical TGF-β Signaling During Mammary Tumorigenesis , 2011, Journal of Mammary Gland Biology and Neoplasia.

[13]  J. Bruix,et al.  Management of hepatocellular carcinoma: An update , 2011, Hepatology.

[14]  M. Barcellos-Hoff,et al.  TGF-beta biology in mammary development and breast cancer. , 2011, Cold Spring Harbor perspectives in biology.

[15]  Jing Zhong,et al.  Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update , 2011, Cell and Tissue Research.

[16]  G. Malaguarnera,et al.  Serum Markers of Hepatocellular Carcinoma , 2010, Digestive Diseases and Sciences.

[17]  Brian Bierie,et al.  Transforming growth factor beta (TGF-beta) and inflammation in cancer. , 2010, Cytokine & growth factor reviews.

[18]  Fan Wu,et al.  Novel role for epidermal growth factor‐like domain 7 in metastasis of human hepatocellular carcinoma , 2009, Hepatology.

[19]  C. Heldin,et al.  Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. , 2009, Current opinion in cell biology.

[20]  B. Peng,et al.  [Changes in TGF-beta1/Smads signaling pathway in rats with chemical hepatocarcinogenesis]. , 2008, Nan fang yi ke da xue xue bao = Journal of Southern Medical University.

[21]  L. Mishra,et al.  Hepatocellular cancer arises from loss of transforming growth factor beta signaling adaptor protein embryonic liver fodrin through abnormal angiogenesis , 2008, Hepatology.

[22]  Fan Wu,et al.  Decreased expression of methyl methansulfonate and ultraviolet‐sensitive gene clone 81 (Mus81) is correlated with a poor prognosis in patients with hepatocellular carcinoma , 2008, Cancer.

[23]  C. Deng,et al.  Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling , 2008, Proceedings of the National Academy of Sciences.

[24]  Carsten Denkert,et al.  Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. , 2008, The Lancet. Oncology.

[25]  S. Fan,et al.  Survival analysis of patients with transplantable recurrent hepatocellular carcinoma: implications for salvage liver transplant. , 2008, Archives of surgery.

[26]  Y. Paik,et al.  PIVKA-II Is a Useful Tumor Marker for Recurrent Hepatocellular Carcinoma after Surgical Resection , 2007, Oncology.

[27]  A. Rashid,et al.  Disruption of transforming growth factor-β signaling through β-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation , 2007, Oncogene.

[28]  H. El‐Serag,et al.  Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. , 2007, Gastroenterology.

[29]  A. Rashid,et al.  Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. , 2007, Oncogene.

[30]  L. Mishra,et al.  Inactivation of TGF-beta signaling in lung cancer results in increased CDK4 activity that can be rescued by ELF. , 2006, Biochemical and biophysical research communications.

[31]  L. Mishra,et al.  TGF-β signaling pathway inactivation and cell cycle deregulation in the development of gastric cancer: Role of the β-spectrin, ELF , 2006 .

[32]  L. Mishra,et al.  TGF-beta signaling pathway inactivation and cell cycle deregulation in the development of gastric cancer: role of the beta-spectrin, ELF. , 2006, Biochemical and biophysical research communications.

[33]  A. Rashid,et al.  Inactivation of ELF/TGF-β signaling in human gastrointestinal cancer , 2005, Oncogene.

[34]  L. Mishra,et al.  The role of PRAJA and ELF in TGF-β signaling and gastric cancer , 2005, Cancer biology & therapy.

[35]  E. Reddy,et al.  Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. , 2005, Cancer research.

[36]  A. Rashid,et al.  Inactivation of ELF/TGF-beta signaling in human gastrointestinal cancer. , 2005, Oncogene.

[37]  Z. Tang,et al.  Hepatocellular carcinoma--cause, treatment and metastasis. , 2001, World journal of gastroenterology.

[38]  H. Edmondson,et al.  Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies , 1954, Cancer.