Positive periodic solutions of periodic neutral Lotka–Volterra system with distributed delays

Abstract By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence of positive periodic solutions of the following periodic neutral Lotka–Volterra system with distributed delays d x i ( t ) d t = x i ( t ) a i ( t ) - ∑ j = 1 n b ij ( t ) ∫ - T ij 0 K ij ( θ ) x j ( t + θ ) d θ - ∑ j = 1 n c ij ( t ) ∫ - T ˆ ij 0 K ˆ ij ( θ ) x j ′ ( t + θ ) d θ , i = 1 , 2 , … , n , where a i , b ij , c ij ∈ C ( R , R + ) (i, j = 1, 2, … , n) are ω-periodic functions, T ij , T ˆ ij ∈ ( 0 , ∞ ) (i, j = 1, 2, … , n) and K ij , K ˆ ij ∈ ( R , R + ) satisfying ∫ - T ij 0 K ij ( θ ) d θ = 1 , ∫ - T ˆ ij 0 K ˆ ij ( θ ) d θ = 1 , i, j = 1, 2, … , n.

[1]  Yang Kuang,et al.  Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional-differential systems , 1997 .

[2]  Li Yongkun,et al.  PERIODIC SOLUTIONS OF A PERIODIC DELAY PREDATOR-PREY SYSTEM , 1999 .

[3]  Xue-Zhong He,et al.  On a periodic neutral logistic equation , 1991, Glasgow Mathematical Journal.

[4]  Juan A. Gatica,et al.  Fixed point theorems for mappings in ordered Banach spaces , 1979 .

[5]  Han Maoan,et al.  The existence of periodic solutions of the n-species Lotka–Volterra competition systems with impulsive , 2004 .

[6]  Yang Kuang,et al.  Periodic Solutions of Periodic Delay Lotka–Volterra Equations and Systems☆ , 2001 .

[7]  P. Chesson Understanding the role of environmental variation in population and community dynamics , 2003 .

[8]  B. G. Zhang,et al.  On a neutral delay logistic equation , 1988 .

[9]  Jianhong Wu,et al.  Periodic solutions of single-species models with periodic delay , 1992 .

[10]  Yang Kuang,et al.  Periodic solutions in periodic state-dependent delay equations and population models , 2001 .

[11]  Ke Wang,et al.  Global Existence of Positive Periodic Solutions of Periodic Predator–Prey System with Infinite Delays , 2001 .

[12]  Jinde Cao,et al.  Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models , 2003, Appl. Math. Comput..

[13]  Existence and global attractivity of positive periodic solution for competition-predator system with variable delays , 2006 .

[14]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[15]  Maoan Han,et al.  Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays , 2004 .

[16]  Yang Kuang,et al.  Periodic Solutions in Periodic Delayed Gause-Type Predator-Prey Systems , 2001 .

[17]  K. Gopalsamy,et al.  Global asymptotic stability in a periodic Lotka-Volterra system , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[18]  Yang Pinghua,et al.  Global Attractivity of the Periodic Lotka–Volterra System☆ , 1999 .

[19]  Zhien Ma,et al.  Periodic solutions for delay differential equations model of plankton allelopathy , 2002 .

[20]  D. Jiang,et al.  Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments. , 1999, Mathematical biosciences.

[21]  Jinde Cao,et al.  Positive periodic solutions of neutral Lotka-Volterra system with periodic delays , 2004, Appl. Math. Comput..

[22]  Zhen Jin,et al.  The persistence in a Lotka–Volterra competition systems with impulsive☆ , 2005 .

[23]  Yongkun Li,et al.  Periodic Solutions for Delay Lotka–Volterra Competition Systems , 2000 .

[24]  Wang Wendi,et al.  Asymptotic behavior of predator–prey system with time dependent coefficients , 1989 .