Prediction in Multilevel Logistic Regression

The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss–Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.

[1]  J.,et al.  Variances are Not Always Nuisance Parameters , 2003 .

[2]  Murray Aitkin,et al.  Variance Component Models with Binary Response: Interviewer Variability , 1985 .

[3]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[4]  S. Rabe-Hesketh,et al.  Prediction in multilevel generalized linear models , 2009 .

[5]  Anthony Y. C. Kuk Laplace Importance Sampling for Generalized Linear Mixed Models , 1999 .

[6]  H. Robbins An Empirical Bayes Approach to Statistics , 1956 .

[7]  J. de Leeuw,et al.  Prediction in Multilevel Models , 2005 .

[8]  Joop J. Hox,et al.  Applied Multilevel Analysis. , 1995 .

[9]  Harvey Goldstein,et al.  Improved Approximations for Multilevel Models with Binary Responses , 1996 .

[10]  Generalized linear mixed models for strawberry inflorescence data , 2003 .

[11]  H. Goldstein Nonlinear multilevel models, with an application to discrete response data , 1991 .

[12]  B. Steele,et al.  A modified EM algorithm for estimation in generalized mixed models. , 1996, Biometrics.

[13]  D. Renard Topics in Modeling Multilevel and Longitudinal Data , 2002 .

[14]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[15]  J. Gill Hierarchical Linear Models , 2005 .

[16]  R. Carroll Variances Are Not Always Nuisance Parameters , 2003 .

[17]  Karl J. Friston,et al.  Variance Components , 2003 .

[18]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[19]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[20]  N. Longford A FAST SCORING ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATION IN UNBALANCED MIXED MODELS WITH NESTED RANDOM EFFECTS , 1987 .

[21]  Jiming Jiang,et al.  Mixed model prediction and small area estimation , 2006 .

[22]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[23]  Jiming Jiang,et al.  Empirical Best Prediction for Small Area Inference with Binary Data , 2001 .

[24]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[25]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[26]  Göran Broström,et al.  Generalized linear models with random intercepts , 2003 .