Neighborhood-following algorithms for linear programming

In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neighborhood degenerates into the central path, our algorithms also degenerate into path-following algorithms. We prove that our algorithms maintain the O9√nL) -iteration complexity still, while the classical wide neighborhood primal-dual interior point algorithms have only the O(nL-iteration complexity. We also proved that the algorithms are quadratic convergence if the optimal vertex is nondegenerate. Finally, we show some computational results of our algorithms.