Topology optimization with implicit functions and regularization

Topology optimization is formulated in terms of the nodal variables that control an implicit function description of the shape. The implicit function is constrained by upper and lower bounds, so that only a band of nodal variables needs to be considered in each step of the optimization. The weak form of the equilibrium equation is expressed as a Heaviside function of the implicit function; the Heaviside function is regularized to permit the evaluation of sensitivities. We show that the method is a dual of the Bends–Kikuchi method. The method is applied both to problems of optimizing single material and multi‐material configurations; the latter is made possible by enrichment functions based on the extended finite element method that enable discontinuous derivatives to be accurately treated within an element. The method is remarkably robust and we found no instances of checkerboarding. The method handles topological merging and separation without any apparent difficulties. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[2]  R. Fox,et al.  Constraint surface normals for structural synthesis techniques , 1965 .

[3]  William Prager,et al.  A note on discretized michell structures , 1974 .

[4]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[5]  M. Życzkowski,et al.  Problems of Optimal Structural Design , 1988 .

[6]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[7]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[8]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[9]  H. P. Mlejnek,et al.  Some aspects of the genesis of structures , 1992 .

[10]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[11]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[12]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[13]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[14]  C. S. Jog,et al.  Stability of finite element models for distributed-parameter optimization and topology design , 1996 .

[15]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[16]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[17]  S. Torquato,et al.  Design of smart composite materials using topology optimization , 1999 .

[18]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[19]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[20]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[21]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[22]  S. Usui,et al.  Arbitrary discontinuities in nite elements , 2001 .

[23]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[24]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[25]  T. Belytschko,et al.  Structured extended nite element methods for solids de ned by implicit surfaces , 2002 .

[26]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[27]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .