Flower Constellation of Millimeter-Wave Radiometers for Tropospheric Monitoring at Pseudogeostationary Scale

In this paper, the design of a minisatellite FLOwer constellation (FC), deploying millimeter-wave (MMW) scanning RADiometers, namely, FLORAD, and devoted to tropospheric observations, is analyzed and discussed. The FLORAD mission is aimed at the retrieval of thermal and hydrological properties of the troposphere, specifically temperature profile, water-vapor profile, cloud liquid content, and rainfall and snowfall rate. The goal of frequent revisit time at regional scale, coupled with quasi-global coverage and relatively high spatial resolution, is here called pseudogeostationary scale and implemented through a FC of three minisatellites in elliptical orbits. FCs are built on compatible (resonant) orbits and can offer several degrees of freedom in their design. The payload MMW channels for tropospheric retrieval were selected following the ranking based on a reduced-entropy method between 90 and 230 GHz. Various configurations of the MMW radiometer multiband channels are investigated, pointing out the tradeoff between performances and complexity within the constraint of minisatellite platform. Statistical inversion schemes are employed to quantify the overall accuracy of the selected MMW radiometer configurations.

[1]  David H. Staelin,et al.  Precipitation Retrieval Accuracies for Geo-Microwave Sounders , 2007, IEEE Trans. Geosci. Remote. Sens..

[2]  Francesco Caltagirone,et al.  SkyMed/COSMO mission overview , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[3]  Clive D. Rodgers Information content and optimization of high-spectral-resolution measurements , 1996, Optics + Photonics.

[4]  Laurent Costes,et al.  Microwave Humidity Sounder (MHS) antenna , 1999, Remote Sensing.

[5]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With A Cloud-Resolving Numerical Weather-Prediction Model, Part II: Performance Evaluation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  Stanley Q. Kidder,et al.  Satellite Meteorology: An Introduction , 1995 .

[8]  Frank S. Marzano,et al.  Three‐dimensional variational assimilation of Special Sensor Microwave/Imager data into a mesoscale weather‐prediction model: A case study , 2007 .

[9]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Federal Reserve Board and Federal Reserve Bank of San Francisco, res p e c t ive ly. The authors would like to thank , 2022 .

[11]  Niels Bormann,et al.  Assimilation and monitoring of SSMIS , AMSR-E , and TMI data at ECMWF , 2006 .

[12]  James F. W. Purdom,et al.  Satellite Analysis of Tropical Cyclones Using the Advanced Microwave Sounding Unit (AMSU). , 2000 .

[13]  Tim J. Hewison,et al.  Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  Stanley Q. Kidder,et al.  On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes , 1990 .

[15]  Matthias C. Schabel,et al.  A Reanalysis of the MSU Channel 2 Tropospheric Temperature Record , 2003 .

[16]  P. Bauer,et al.  Passive microwave radiometer channel selection basedoncloudandprecipitation information content , 2006 .

[17]  Stephen S. Leroy,et al.  Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements , 2008 .

[18]  Frank S. Marzano,et al.  A Neural Networks–Based Fusion Technique to Estimate Half-Hourly Rainfall Estimates at 0.1° Resolution from Satellite Passive Microwave and Infrared Data , 2004 .

[19]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[20]  Riko Oki,et al.  International Global Precipitation Measurement (GPM) Program and Mission: An Overview , 2007 .

[21]  Alberto Mugnai,et al.  Precipitation profile retrievals using temperature‐sounding microwave observations , 2003 .

[22]  M. Ruggieri,et al.  Flower Constellation of Orbiters for Martian Communication , 2007, 2007 IEEE Aerospace Conference.

[23]  F. Joseph Turk,et al.  Measuring Precipitation from Space: EURAINSAT and the Future , 2007 .

[24]  P. Joe,et al.  Snowfall Measurements by Proposed European GPM Mission , 2007 .

[25]  F. Marzano,et al.  FLORAD: Micro-satellite flower constellation of millimeter-wave radiometers for atmospheric remote sensing , 2008, 2008 Microwave Radiometry and Remote Sensing of the Environment.

[26]  Frank S. Marzano,et al.  Multivariate statistical integration of Satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[27]  C. Bruccoleri,et al.  The Flower Constellations visualization and analysis tool , 2005, 2005 IEEE Aerospace Conference.

[28]  Bjorn Lambrigtsen,et al.  The Humidity Sounder for Brazil - an international partnership , 2003, IEEE Trans. Geosci. Remote. Sens..

[29]  Peter Bauer,et al.  Multiple‐scattering microwave radiative transfer for data assimilation applications , 2006 .

[30]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[31]  Philip W. Rosenkranz,et al.  Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  J. G. Walker,et al.  Comments on "Rosette Constellations of Earth Satellites" , 1982 .

[33]  Frank S. Marzano,et al.  Rainfall Nowcasting From Multisatellite Passive-Sensor Images Using a Recurrent Neural Network , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Tim J. Hewison,et al.  Fast generic millimeter-wave emissivity model , 1998, Asia-Pacific Environmental Remote Sensing.

[35]  A. J. Gasiewski,et al.  Numerical modeling of passive microwave O2 observations over precipitation , 1990 .

[36]  Frank S. Marzano,et al.  Retrieving atmospheric temperature profiles by microwave radiometry using a priori information on atmospheric spatial-temporal evolution , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  F. Marzano,et al.  Modeling antenna noise temperature due to rain clouds at microwave and Millimeter-wave frequencies , 2006, IEEE Transactions on Antennas and Propagation.

[38]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[39]  D. Mortari,et al.  AAS 05-148 Satellite Constellation Design for Earth Observation ∗ , 2005 .

[40]  V. Cuomo,et al.  Multilayered cloud parameters retrievals from combined infrared and microwave satellite observations , 2007 .

[41]  F. Marzano,et al.  Predicting Antenna Noise Temperature Due to Rain Clouds at Microwave and Millimeter-Wave Frequencies , 2006, IEEE Transactions on Antennas and Propagation.

[42]  Fuzhong Weng,et al.  Passive Microwave Remote Sensing of Extreme Weather Events Using NOAA-18 AMSUA and MHS , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[43]  David H. Staelin,et al.  AIRS/AMSU/HSB precipitation estimates , 2003, IEEE Trans. Geosci. Remote. Sens..

[44]  Daniele Mortari,et al.  The Flower Constellations , 2004 .

[45]  Domenico Cimini,et al.  Ground-Based Millimeter- and Submillimeter-Wave Observations of Low Vapor and Liquid Water Contents , 2007, IEEE Transactions on Geoscience and Remote Sensing.