Reliability Assessment of Cable-Stayed Bridges

The paper deals with the reliability assessment of P.C. cable-stayed bridges, but it is thought that the presented methodology is generally applicable. Due to several sources of uncertainties, the geometrical and mechanical properties which define the structural problem cannot be considered as deterministic quantities. In this work, such uncertainties are modelled by using a fuzzy criterion which considers the model parameters bounded between minimum and maximum suitable values. The reliability problem is formulated in terms of safety factor and the membership function over the failure interval is derived for several limit states by using a simulation technique. In particular, the strategic planning of the simulation is found by means of a genetic optimisation algorithm and the structural analyses are carried out by taking both material and geometrical non-linearity into account. An application to a cable-stayed bridge shows the effectiveness of the proposed procedure.