Elementary factorisation of Box spline subdivision

When a subdivision scheme is factorised into lifting steps, it admits an in–place and invertible implementation, and it can be the predictor of many multiresolution biorthogonal wavelet transforms. In the regular setting where the underlying lattice hierarchy is defined by ℤs and a dilation matrix M, such a factorisation should deal with every vertex of each subset in ℤs/Mℤs in the same way. We define a subdivision scheme which admits such a factorisation as being uniformly elementary factorable. We prove a necessary and sufficient condition on the directions of the Box spline and the arity of the subdivision for the scheme to admit such a factorisation, and recall some known keys to construct it in practice.

[1]  Martin Bertram,et al.  Biorthogonal Loop-Subdivision Wavelets , 2004, Computing.

[2]  Andrei Suslin,et al.  ON THE STRUCTURE OF THE SPECIAL LINEAR GROUP OVER POLYNOMIAL RINGS , 1977 .

[3]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[4]  M. Salvatori,et al.  Affine Frames of Multivariate Box Splines and their Affine Duals , 2002 .

[5]  Martin Vetterli,et al.  A computational theory of laurent polynomial rings and multidimensional fir systems , 1999 .

[6]  Richard G. Swan,et al.  Projective modules over Laurent polynomial rings , 1978 .

[7]  M. Ehler,et al.  Applied and Computational Harmonic Analysis , 2015 .

[8]  Neil A. Dodgson,et al.  A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines , 2009, Comput. Aided Geom. Des..

[9]  A. Quadrat,et al.  Applications of the Quillen-Suslin theorem to multidimensional systems theory , 2007 .

[10]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[11]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[12]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[13]  R. Jia Multivariate discrete splines and linear Diophantine equations , 1993 .

[14]  C. Micchelli,et al.  Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .

[15]  M. Ehler On Multivariate Compactly Supported Bi-Frames , 2007 .

[16]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[17]  Neil A. Dodgson,et al.  Deriving Box-Spline Subdivision Schemes , 2009, IMA Conference on the Mathematics of Surfaces.

[18]  Basile Sauvage,et al.  Volume Preservation of Multiresolution Meshes , 2007, Comput. Graph. Forum.

[19]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[20]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  T. Lam Serre's Problem on Projective Modules , 2006 .

[22]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[23]  Martin Vetterli,et al.  Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..

[24]  Hyungju Park,et al.  Symbolic computation and signal processing , 2004, J. Symb. Comput..

[25]  Martin Ehler,et al.  The Construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes , 2007 .

[26]  Peter Schröder,et al.  A multiresolution framework for variational subdivision , 1998, TOGS.

[27]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[28]  Zuowei Shen,et al.  Construction of compactly supported biorthogonal wavelets: II , 1999, Optics & Photonics.