Optimal Slot Assignment for Binary Tracking Tree Protocol in RFID Tag Identification

Tag anti-collision has long been an important issue in RFID systems. To accelerate tag identification, some researchers have recently adopted bit tracking technology that allows the reader to detect the locations of collided bits in a collision slot. However, these methods still encounter the problem of too many collisions occurring at the beginning of identification. This paper proposes an optimal binary tracking tree protocol (OBTT) that tries to separate all of the tags into smaller sets to reduce collisions at the beginning of identification. Using bit tracking technology, OBTT mainly adopts three proposed approaches, bit estimation, optimal partition, and binary tracking tree. Bit estimation first estimates the number of tags based on the locations of collided bits. Optimal partition then determines the optimal number of the initial sets based on this estimation. Binary tracking tree lets the tag utilize one counter to achieve the split during the identification process. This paper formally analyzes the slot efficiency of OBTT, which represents how many tags can be identified in a slot. Results show that the slot efficiency is close to 0.614, the highest value published to date. Considering slot lengths, OBTT further determines the optimal number of the initial sets to minimize the identification delay. The analytical results show that the delay efficiency of OBTT achieves 0.750, where delay efficiency represents the number of tags that can be identified in a baseline slot, the length of which is the complete ID sent by the tag. The simulation results show that OBTT outperforms other existing algorithms.

[1]  Jin Zhang,et al.  Assigned Tree Slotted Aloha RFID Tag Anti-Collision Protocols , 2013, IEEE Transactions on Wireless Communications.

[2]  Jeong Geun Kim,et al.  A capture-aware access control method for enhanced RFID anti-collision performance , 2009, IEEE Communications Letters.

[3]  Asier Perallos,et al.  A Fast RFID Identification Protocol with Low Tag Complexity , 2013, IEEE Communications Letters.

[4]  Wonjun Lee,et al.  An Adaptive Memoryless Protocol for RFID Tag Collision Arbitration , 2006, IEEE Transactions on Multimedia.

[5]  Ching-Nung Yang,et al.  An Effective 16-bit Random Number Aided Query Tree Algorithm for RFID Tag Anti-Collision , 2011, IEEE Communications Letters.

[6]  M. Victoria Bueno-Delgado,et al.  On the optimal frame-length configuration on real passive RFID systems , 2011, J. Netw. Comput. Appl..

[7]  Chih-Chung Lin,et al.  Two Blocking Algorithms on Adaptive Binary Splitting: Single and Pair Resolutions for RFID Tag Identification , 2009, IEEE/ACM Transactions on Networking.

[8]  Hyong-Woo Lee,et al.  RFID MAC Performance Evaluation Based on ISO/IEC 18000-6 Type C , 2008, IEEE Communications Letters.

[9]  Feng Zhou,et al.  Optimize the power consumption of passive electronic tags for anti-collision schemes , 2003, ASICON 2003.

[10]  Chih-Chung Lin,et al.  A Pair-Resolution Blocking Algorithm on Adaptive Binary Splitting for RFID Tag Identification , 2008, IEEE Communications Letters.

[11]  Tae-Jin Lee,et al.  An efficient framed-slotted ALOHA algorithm with pilot frame and binary selection for anti-collision of RFID tags , 2008, IEEE Communications Letters.

[12]  Wen-Tzu Chen,et al.  An Accurate Tag Estimate Method for Improving the Performance of an RFID Anticollision Algorithm Based on Dynamic Frame Length ALOHA , 2009, IEEE Transactions on Automation Science and Engineering.

[13]  Min Young Chung,et al.  Identification of RFID Tags in Framed-Slotted ALOHA with Robust Estimation and Binary Selection , 2007, IEEE Communications Letters.

[14]  Klaus Finkenzeller,et al.  RFID Handbook: Radio-Frequency Identification Fundamentals and Applications , 2000 .

[15]  Harald Vogt,et al.  Efficient Object Identification with Passive RFID Tags , 2002, Pervasive.

[16]  Thomas F. La Porta,et al.  Anticollision Protocols for Single-Reader RFID Systems: Temporal Analysis and Optimization , 2011, IEEE Transactions on Mobile Computing.

[17]  Jaideep Srivastava,et al.  Tag-Splitting: Adaptive Collision Arbitration Protocols for RFID Tag Identification , 2007, IEEE Transactions on Parallel and Distributed Systems.

[18]  Yu Zeng,et al.  Bayesian Tag Estimate and Optimal Frame Length for Anti-Collision Aloha RFID System , 2010, IEEE Transactions on Automation Science and Engineering.

[19]  Xi Yang,et al.  Capture-Aware Estimation for the Number of RFID Tags with Lower Complexity , 2013, IEEE Communications Letters.

[20]  Shing-Tsaan Huang,et al.  Adaptive splitting and pre-signaling for RFID tag anti-collision , 2009, Computer Communications.

[21]  Bo Sheng,et al.  Counting RFID Tags Efficiently and Anonymously , 2010, 2010 Proceedings IEEE INFOCOM.

[22]  Yi Pan,et al.  A Novel Anti-Collision Algorithm in RFID Systems for Identifying Passive Tags , 2010, IEEE Transactions on Industrial Informatics.

[23]  Murali S. Kodialam,et al.  Fast and reliable estimation schemes in RFID systems , 2006, MobiCom '06.

[24]  Hyuckjae Lee,et al.  Query tree-based reservation for efficient RFID tag anti-collision , 2007, IEEE Communications Letters.

[25]  Shigang Chen,et al.  Energy Efficient Algorithms for the RFID Estimation Problem , 2010, 2010 Proceedings IEEE INFOCOM.

[26]  Pingzhi Fan,et al.  An Enhanced Anti-collision Algorithm in RFID Based on Counter and Stack , 2007, 2007 Second International Conference on Systems and Networks Communications (ICSNC 2007).

[27]  Kwan-Wu Chin,et al.  A Survey and Tutorial of RFID Anti-Collision Protocols , 2010, IEEE Communications Surveys & Tutorials.

[28]  Klaus Dohmen,et al.  An improvement of the inclusion-exclusion principle , 1999 .

[29]  Jaideep Srivastava,et al.  Adaptive binary splitting for efficient RFID tag anti-collision , 2006, IEEE Communications Letters.

[30]  Jeong Geun Kim A Divide-and-Conquer Technique for Throughput Enhancement of RFID Anti-collision Protocol , 2008, IEEE Communications Letters.

[31]  Bo Li,et al.  Performance analysis of RFID Generation-2 protocol , 2009, IEEE Transactions on Wireless Communications.

[32]  Byeongchan Jeon,et al.  Multiple RFID Tags Identification with M-ary Query Tree Scheme , 2013, IEEE Communications Letters.

[33]  Chonggang Wang,et al.  Optimization of tag reading performance in generation-2 RFID protocol , 2009, Comput. Commun..

[34]  Yunhao Liu,et al.  Cardinality Estimation for Large-Scale RFID Systems , 2008, IEEE Transactions on Parallel and Distributed Systems.

[35]  Bo Li,et al.  Efficient Anti-Collision Algorithm Utilizing the Capture Effect for ISO 18000-6C RFID Protocol , 2011, IEEE Communications Letters.

[36]  Yuan-Cheng Lai,et al.  General binary tree protocol for coping with the capture effect in RFID tag identification , 2010, IEEE Communications Letters.

[37]  Lixin Gao,et al.  Energy-Aware Tag Anticollision Protocols for RFID Systems , 2007, IEEE Transactions on Mobile Computing.

[38]  F. Schoute,et al.  Dynamic Frame Length ALOHA , 1983, IEEE Trans. Commun..