Photocontrol of fluid slugs in liquid crystal polymer microactuators

[1]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[2]  Dirk J. Broer,et al.  New insights into photoactivated volume generation boost surface morphing in liquid crystal coatings , 2015, Nature Communications.

[3]  D. Wiersma,et al.  Light-Fueled Microscopic Walkers , 2015, Advanced materials.

[4]  Danqing Liu,et al.  Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating , 2015, Proceedings of the National Academy of Sciences.

[5]  Tomiki Ikeda,et al.  Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. , 2014, Angewandte Chemie.

[6]  Aleksandra Fortier,et al.  Review of biomechanical studies of arteries and their effect on stent performance , 2014 .

[7]  Anna Venancio-Marques,et al.  Digital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesis. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[8]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[9]  J. Cornelissen,et al.  Conversion of light into macroscopic helical motion. , 2014, Nature chemistry.

[10]  Yen Wei,et al.  Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. , 2014, Nature materials.

[11]  Ali Khademhosseini,et al.  Electrospun scaffolds for tissue engineering of vascular grafts. , 2014, Acta biomaterialia.

[12]  K. M. Lee,et al.  Topography from Topology: Photoinduced Surface Features Generated in Liquid Crystal Polymer Networks , 2013, Advanced materials.

[13]  A. deMello,et al.  The past, present and potential for microfluidic reactor technology in chemical synthesis. , 2013, Nature chemistry.

[14]  Rudolf Zentel,et al.  Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. , 2013, Angewandte Chemie.

[15]  A. Woolley,et al.  Advances in microfluidic materials, functions, integration, and applications. , 2013, Chemical reviews.

[16]  W. DiNatale,et al.  Synthesis of a New, Low-Tg Siloxane Thermoplastic Elastomer with a Functionalizable Backbone and Its Use as a Rapid, Room Temperature Photoactuator , 2013 .

[17]  D. Baigl,et al.  Microfluidic mixing triggered by an external LED illumination. , 2013, Journal of the American Chemical Society.

[18]  D. Baigl,et al.  Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. , 2012, Lab on a chip.

[19]  Ying Zhang,et al.  Photoresponsive side-chain liquid crystalline polymers with amide group-substituted azobenzene mesogens: effects of hydrogen bonding, flexible spacers, and terminal tails , 2012 .

[20]  Huisheng Peng,et al.  Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. , 2012, Angewandte Chemie.

[21]  Lei Jiang,et al.  In Situ Fully Light‐Driven Switching of Superhydrophobic Adhesion , 2012 .

[22]  Yanlei Yu,et al.  NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. , 2011, Journal of the American Chemical Society.

[23]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[24]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[25]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[26]  Eric P. Y. Chiou,et al.  Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. , 2010, Lab on a chip.

[27]  Kenichi Yoshikawa,et al.  Photomanipulation of a droplet by the chromocapillary effect. , 2009, Angewandte Chemie.

[28]  D. Broer,et al.  Printed artificial cilia from liquid-crystal network actuators modularly driven by light. , 2009, Nature materials.

[29]  J. M. Bush,et al.  Drop propulsion in tapered tubes , 2009 .

[30]  Sung Yong Park,et al.  Continuous optoelectrowetting for picoliter droplet manipulation , 2008 .

[31]  R. Vaia,et al.  A high frequency photodriven polymer oscillator , 2008 .

[32]  J. M. Bush,et al.  Surface Tension Transport of Prey by Feeding Shorebirds: The Capillary Ratchet , 2008, Science.

[33]  Krishna D.P. Nigam,et al.  A Review on the Potential Applications of Curved Geometries in Process Industry , 2008 .

[34]  S. T. Picraux,et al.  Photon control of liquid motion on reversibly photoresponsive surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[35]  Teruo Fujii,et al.  Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. , 2007, Lab on a chip.

[36]  Pál Ormos,et al.  Control of electro-osmostic flow by light , 2006 .

[37]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[38]  Gregory W Faris,et al.  Optically addressed droplet-based protein assay. , 2005, Journal of the American Chemical Society.

[39]  Yanlei Yu,et al.  Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions , 2004 .

[40]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[41]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[42]  Hiroshi Toshiyoshi,et al.  Light actuation of liquid by optoelectrowetting , 2003 .

[43]  Bin Li,et al.  Light‐Driven Side‐On Nematic Elastomer Actuators , 2003 .

[44]  D. E. Fogg,et al.  Multiple Tandem Catalysis: Facile Cycling between Hydrogenation and Metathesis Chemistry , 2001 .

[45]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[46]  David J. Beebe,et al.  Active control of electroosmotic flow in microchannels using light , 2001 .

[47]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[48]  R. Shadwick,et al.  Mechanical design in arteries. , 1999, The Journal of experimental biology.

[49]  T. Ikeda,et al.  Three-Dimensional Manipulation of an Azo Polymer Liquid Crystal with Unpolarized Light , 1999 .

[50]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[51]  Arthur Ashkin,et al.  Radiation Pressure on a Free Liquid Surface , 1973 .