A VLSI-efficient technique for generating multiple uncorrelated noise sources and its application to stochastic neural networks

A method for generating multiple arbitrarily shifted pseudorandom bit streams from a single linear feedback shift register (LFSR) is presented. Each bit stream is obtained by tapping the outputs of selected LFSR cells and feeding these tapped cell outputs through a set of exclusive-OR gates. This enables many neurons to share a single LFSR, resulting in an acceptably small overhead for VLSI implementation. >

[1]  E. Watson Primitive Polynomials (Mod 2) , 1962 .

[2]  S. H. Tsao Generation of delayed replicas of maximal-length linear binary sequences , 1964 .

[3]  A. Davies Delayed versions of maximal-length linear binary sequences , 1965 .

[4]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .

[5]  J. E. Marshall,et al.  Matrix method to determine shift-register connections for delayed pseudorandom binary sequences , 1968 .

[6]  R. Gallager Information Theory and Reliable Communication , 1968 .

[7]  Neal Zierler,et al.  Primitive Trinomials Whose Degree is a Mersenne Exponent , 1969, Inf. Control..

[8]  J. P. R. Tootill,et al.  The Runs Up-and-Down Performance of Tausworthe Pseudo-Random Number Generators , 1971, JACM.

[9]  Abraham Lempel,et al.  High Speed Generation of Maximal Length Sequences , 1971, IEEE Transactions on Computers.

[10]  Wayne Stahnke Primitive binary polynomials , 1973 .

[11]  J. P. R. Tootill,et al.  An Asymptotically Random Tausworthe Sequence , 1973, JACM.

[12]  J. O'Reilly Series-parallel generation of m-sequences , 1975 .

[13]  A. N. V. Luyn Shift-register connections for delayed versions of m-sequences , 1978 .

[14]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[17]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[18]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[19]  Robert B. Allen,et al.  Stochastic Learning Networks and their Electronic Implementation , 1987, NIPS.

[20]  Robert B. Allen,et al.  Performance of a Stochastic Learning Microchip , 1990, NIPS.

[21]  Howard C. Card,et al.  Cellular automata-based pseudorandom number generators for built-in self-test , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  W. J. McFarland,et al.  1-Gword/s pseudorandom word generator , 1989 .

[23]  A. R. Murch,et al.  Colored noise generation through deterministic chaos , 1990 .