Quot-scheme limit of Fubini-Study metrics and Donaldson's functional for vector bundles

For a holomorphic vector bundle $E$ over a polarised K\"ahler manifold, we establish a direct link between the slope stability of $E$ and the asymptotic behaviour of Donaldson's functional, by defining the Quot-scheme limit of Fubini-Study metrics. In particular, we provide an explicit estimate which proves that Donaldson's functional is coercive on the set of Fubini-Study metrics if $E$ is slope stable, and give a new proof of Hermitian-Einstein metrics implying slope stability.

[1]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[2]  X. Ma,et al.  Holomorphic Morse Inequalities and Bergman Kernels , 2007 .

[3]  D. Huybrechts,et al.  The geometry of moduli spaces of sheaves , 1997 .

[4]  Adam Jacob The Yang-Mills flow and the Atiyah-Bott formula on compact Kähler manifolds , 2011, 1109.1550.

[5]  Xiaowei Wang Canonical metrics on stable vector bundles , 2005 .

[6]  C. Simpson Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .

[7]  J. Ross,et al.  Quantization of Hitchin's equations for Higgs Bundles I , 2016, 1601.04960.

[8]  S. Donaldson Infinite determinants, stable bundles and curvature , 1987 .

[9]  Adam Jacob The limit of the Yang-Mills flow on semi-stable bundles , 2011, 1104.4767.

[10]  Convergence properties of the Yang-Mills flow on Kaehler surfaces , 2004, math/0410055.

[11]  M. Jonsson,et al.  Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.

[12]  Lower bounds on the Calabi functional , 2005, math/0506501.

[13]  M. Lübke Stability of Einstein-Hermitian vector bundles , 1983 .

[14]  Julien Keller,et al.  A variational approach to the Hermitian-Einstein metrics and the Quot-scheme limit of Fubini-Study metrics , 2019, 1907.05770.

[15]  Xiaowei Wang Balance point and Stability of Vector Bundles Over a Projective Manifold , 2002 .

[16]  A. Teleman,et al.  The Kobayashi-Hitchin correspondence , 1995 .

[17]  Julien Keller,et al.  Quot-scheme limit of Fubini-Study metrics and its applications to balanced metrics , 2021, 2101.00996.

[18]  DELIGNE PAIRINGS AND THE KNUDSEN-MUMFORD EXPANSION , 2006, math/0612555.

[19]  S. Donaldson,et al.  A new proof of a theorem of Narasimhan and Seshadri , 1983 .

[20]  S. Boucksom VARIATIONAL AND NON-ARCHIMEDEAN ASPECTS OF THE YAU–TIAN–DONALDSON CONJECTURE , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[21]  Notes on GIT and symplectic reduction for bundles and varieties , 2005, math/0512411.

[22]  Y. Siu Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics: Delivered At The German Mathematical Society Seminar In Düsseldorf In June, 1986 , 1987 .

[23]  D. Catlin The Bergman Kernel and a Theorem of Tian , 1999 .

[24]  D. Phong,et al.  Stability, energy functionals, and Kahler-Einstein metrics , 2002, math/0203254.

[25]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[26]  R. Berman,et al.  Regularity of weak minimizers of the K-energy and applications to properness and K-stability , 2016, Annales scientifiques de l'École normale supérieure.

[27]  Adam Jacob Existence of approximate Hermitian-Einstein structures on semi-stable bundles , 2010, 1012.1888.

[28]  P. J. Cohen A SIMPLE PROOF OF THE THEOREM OF , 2007 .

[29]  R. Wentworth,et al.  Analytic cycles, Bott-Chern forms, and singular sets for the Yang-Mills flow on Kaehler manifolds , 2014, 1402.3808.

[30]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  Zakarias Sjöström Dyrefelt K-Semistability of cscK Manifolds with Transcendental Cohomology Class , 2017, The Journal of Geometric Analysis.

[32]  Florent Schaffhauser Differential geometry of holomorphic vector bundles on a curve , 2015, 1509.01734.

[33]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .

[34]  M. Jonsson,et al.  Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.

[35]  F. Knudsen,et al.  Projectivity of the moduli space of stable curves , 1976 .

[36]  M. Jonsson,et al.  A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.