Single-step digital backpropagation for nonlinearity mitigation

[1]  Xiaojun Liang,et al.  Correlated digital back propagation based on perturbation theory. , 2015, Optics express.

[2]  Simon Rommel,et al.  Coherent 100G nonlinear compensation with single-step digital backpropagation , 2015, 2015 International Conference on Optical Network Design and Modeling (ONDM).

[3]  Seb J. Savory,et al.  Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation , 2015, Scientific Reports.

[4]  Marco Secondini,et al.  Enhanced split-step Fourier method for digital backpropagation , 2014, 2014 The European Conference on Optical Communication (ECOC).

[5]  Henk Wymeersch,et al.  On maximum likelihood sequence detectors for single-channel coherent optical communications , 2014, 2014 The European Conference on Optical Communication (ECOC).

[6]  Marco Secondini,et al.  On XPM Mitigation in WDM Fiber-Optic Systems , 2014, IEEE Photonics Technology Letters.

[7]  Henk Wymeersch,et al.  Stochastic Digital Backpropagation , 2014, IEEE Transactions on Communications.

[8]  Maxim Kuschnerov,et al.  Reduced Complexity Digital Back-Propagation Methods for Optical Communication Systems , 2014, Journal of Lightwave Technology.

[9]  M. Secondini,et al.  Maximum Likelihood Sequence Detection for Mitigating Nonlinear Effects , 2014, Journal of Lightwave Technology.

[10]  E. Forestieri,et al.  Achievable Information Rate in Nonlinear WDM Fiber-Optic Systems With Arbitrary Modulation Formats and Dispersion Maps , 2013, Journal of Lightwave Technology.

[11]  E. Forestieri,et al.  Analytical Fiber-Optic Channel Model in the Presence of Cross-Phase Modulation , 2012, IEEE Photonics Technology Letters.

[12]  G. Colavolpe,et al.  Impact of Phase Noise and Compensation Techniques in Coherent Optical Systems , 2011, Journal of Lightwave Technology.

[13]  Danish Rafique,et al.  Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm. , 2011, Optics express.

[14]  Takeshi Hoshida,et al.  Implementation efficient nonlinear equalizer based on correlated digital backpropagation , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[15]  Ting Wang,et al.  Complexity versus performance tradeoff for fiber nonlinearity compensation using frequency-shaped, multi-subband backpropagation , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[16]  Rameez Asif,et al.  Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link. , 2010, Optics express.

[17]  Arthur James Lowery,et al.  Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. , 2010, Optics express.

[18]  F. Hauske,et al.  DSP for Coherent Single-Carrier Receivers , 2009, Journal of Lightwave Technology.

[19]  Guifang Li,et al.  Efficient backward-propagation using wavelet-based filtering for fiber backward-propagation. , 2009, Optics express.

[20]  J. Kahn,et al.  Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation , 2008, Journal of Lightwave Technology.

[21]  Guifang Li,et al.  Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. , 2008, Optics express.

[22]  C. Menyuk,et al.  Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems , 2006, Journal of Lightwave Technology.

[23]  M.G. Taylor,et al.  Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments , 2004, IEEE Photonics Technology Letters.

[24]  Alberto Bononi,et al.  The RP method: a new tool for the iterative solution of the nonlinear Schrodinger equation , 2002 .

[25]  M. Brandt-Pearce,et al.  Volterra series transfer function of single-mode fibers , 1997 .

[26]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[27]  Thomas G. Stockham,et al.  High-speed convolution and correlation , 1966, AFIPS '66 (Spring).

[28]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[29]  L. Poti,et al.  Push-Pull Defragmentation Without Traffic Disruption in Flexible Grid Optical Networks , 2013, Journal of Lightwave Technology.

[30]  E. Ciaramella,et al.  Analytical approximation of nonlinear distortions , 2005, IEEE Photonics Technology Letters.

[31]  Marco Secondini,et al.  Solving the Nonlinear Schrödinger Equation , 2005 .

[32]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[33]  R. H. Hardin Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations , 1973 .