Risk Assessment for Integral Safety in Automated Driving

This paper presents a novel risk assessment approach that allows to control the behaviour of self driving cars. This novel continuous real-time risk assessment considers uncertainties as well as accident severity predictions to intervene integrally. Thus it not only allows predictive traffic interaction and collision avoidance, but also an intelligent crash interaction. These decisions are made on incomplete data, due to imperfect environment perception data and road users' unknown intentions. Advanced, situational and numerical dependencies are regarded. Furthermore, the benefit of multiple approximating accident severity estimations are discussed.

[1]  Moritz Werling,et al.  Ein neues Konzept für die Trajektoriengenerierung und -stabilisierung in zeitkritischen Verkehrsszenarien , 2012, Autom..

[2]  Vitor Yano,et al.  A novel approach for intelligent pre-crash threat assessment systems , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[3]  Thomas Brandmeier,et al.  Context-aware system for pre-triggering irreversible vehicle safety actuators. , 2017, Accident; analysis and prevention.

[4]  Azim Eskandarian,et al.  Handbook of Intelligent Vehicles , 2012 .

[5]  Amnon Shashua,et al.  On a Formal Model of Safe and Scalable Self-driving Cars , 2017, ArXiv.

[6]  Steffen Heinrich,et al.  Planning Universal On-Road Driving Strategies for Automated Vehicles , 2018 .

[7]  Volker Willert,et al.  An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment in Arbitrary Road Environments , 2016, IEEE Transactions on Intelligent Transportation Systems.

[8]  Dizan Vasquez,et al.  A survey on motion prediction and risk assessment for intelligent vehicles , 2014, ROBOMECH Journal.

[9]  Lutz Eckstein,et al.  Impact of positioning uncertainty of vulnerable road users on risk minimization in collision avoidance systems , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[10]  Jeffrey Dutschke,et al.  Exploration of Vehicle Impact Speed – Injury Severity Relationships for Application in Safer Road Design , 2016 .

[11]  Mark Gonter,et al.  Integrated Automotive Safety Handbook , 2013 .

[12]  Julian Eggert,et al.  Balancing risk against utility: Behavior planning using predictive risk maps , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[13]  Markus Maurer,et al.  Collision mitigation for crossing traffic in urban scenarios , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[14]  J. Hillenbrand,et al.  Situation assessment algorithm for a collision prevention assistant , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[15]  Martin Buss,et al.  Safety assessment of trajectories for navigation in uncertain and dynamic environments , 2011, 2011 IEEE International Conference on Robotics and Automation.

[16]  J. Beyerer,et al.  A Continuous Approach to Autonomous Driving , 2014 .

[17]  Hermann Winner,et al.  Handbuch Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort , 2009 .

[18]  Kyongsu Yi,et al.  Probabilistic threat assessment with environment description and rule-based multi-traffic prediction for integrated risk management system , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[19]  Fredrik Gustafsson,et al.  Probabilistic Conflict Detection for Piecewise Straight Paths , 2008 .

[20]  Daniel J. Fagnant,et al.  Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations , 2015 .

[21]  Martin Buss,et al.  Safety assessment of robot trajectories for navigation in uncertain and dynamic environments , 2011, Autonomous Robots.

[22]  Wolfgang Hirschberg,et al.  A NOVEL CONTROL ALGORITHM FOR INTEGRATION OF ACTIVE AND PASSIVE VEHICLE SAFETY SYSTEMS IN FRONTAL COLLISIONS , 2010 .

[23]  Hajime Asama,et al.  Inevitable collision states. A step towards safer robots? , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[24]  Julian Eggert,et al.  Risk-Aversive Behavior Planning under Multiple Situations with Uncertainty , 2015, 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

[25]  J. Beyerer,et al.  Situation Prediction And Reaction Control (SPARC) , 2014 .

[26]  Thao Dang,et al.  A novel approach for the probabilistic computation of Time-To-Collision , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[27]  Pongsathorn Raksincharoensak,et al.  Motion Planning and Control of Autonomous Driving Intelligence System Based on Risk Potential Optimization Framework , 2016 .

[28]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[29]  Wolfgang Branz,et al.  Uncertainty propagation in criticality measures for driver assistance , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[30]  Miriam Ruf Considerations on Trajectory Planning Models in Automated Driving , 2016 .

[31]  Mark E. Campbell,et al.  Contingency Planning Over Probabilistic Obstacle Predictions for Autonomous Road Vehicles , 2013, IEEE Transactions on Robotics.

[32]  Hannes Florian Meyer,et al.  Echtzeitoptimierung für Ausweichtrajektorien : mittels der Sensitivitätsanalyse eines parametergestörten nichtlinearen Optimierungsproblems , 2016 .

[33]  Thierry Fraichard,et al.  A Short Paper about Motion Safety , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Matthias Althoff,et al.  Model-Based Probabilistic Collision Detection in Autonomous Driving , 2009, IEEE Transactions on Intelligent Transportation Systems.

[35]  Wolfgang Utschick,et al.  A statistical learning approach for estimating the reliability of crash severity predictions , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[36]  Jonas Jansson,et al.  Collision Avoidance Theory : with Application to Automotive Collision Mitigation , 2005 .

[37]  Hermann Winner,et al.  Development of a general criticality criterion for the risk estimation of driving situations and its application to a maneuver-based lane change assistance system , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[38]  John C Hayward,et al.  NEAR-MISS DETERMINATION THROUGH USE OF A SCALE OF DANGER , 1972 .

[39]  Wolfgang Rosenstiel,et al.  Maneuver decision for active pedestrian protection under uncertainty , 2013, 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).

[40]  Wolfgang Utschick,et al.  Machine Learning Based Prediction of Crash Severity Distributions for Mitigation Strategies , 2018 .

[41]  Julian Eggert,et al.  Predictive risk maps , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).