Ustilago maydis secondary metabolism-from genomics to biochemistry.

[1]  R. Kahmann,et al.  Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. , 2008, Molecular plant pathology.

[2]  P. Karlovsky,et al.  The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan‐dependent pigment synthesis in Ustilago maydis , 2008, Molecular microbiology.

[3]  R. D. de Vries,et al.  Establishment of compatibility in the Ustilago maydis/maize pathosystem. , 2008, Journal of plant physiology.

[4]  M. Marahiel,et al.  A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis , 2007, Molecular microbiology.

[5]  Jos Vanderleyden,et al.  Indole-3-acetic acid in microbial and microorganism-plant signaling. , 2007, FEMS microbiology reviews.

[6]  Sarah Calvo,et al.  Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis , 2006, Nature.

[7]  P. Mayser,et al.  Absence of sunburn in lesions of pityriasis versicolor alba , 2006, Mycoses.

[8]  J. Kämper,et al.  A Ferroxidation/Permeation Iron Uptake System Is Required for Virulence in Ustilago maydis[W] , 2006, The Plant Cell Online.

[9]  P. Mayser,et al.  Pityriacitrin – a potent UV filter produced by Malassezia furfur and its effect on human skin microflora , 2006, Mycoses.

[10]  M. Marahiel,et al.  Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis , 2006, Applied and Environmental Microbiology.

[11]  R. Bödeker,et al.  Pityriarubins, Novel Highly Selective Inhibitors of Respiratory Burst from Cultures of the Yeast Malassezia furfur: Comparison with the Bisindolylmaleimide Arcyriarubin A , 2005, Chembiochem : a European journal of chemical biology.

[12]  T. Kulakovskaya,et al.  Ustilagic acid secretion by Pseudozyma fusiformata strains. , 2005, FEMS yeast research.

[13]  C. Basse Dissecting Defense-Related and Developmental Transcriptional Responses of Maize during Ustilago maydis Infection and Subsequent Tumor Formation1 , 2005, Plant Physiology.

[14]  W. Steglich,et al.  New Tryptophan Metabolites from Cultures of the Lipophilic Yeast Malassezia furfur , 2005 .

[15]  M. Bölker,et al.  Genetic Analysis of Biosurfactant Production in Ustilago maydis , 2005, Applied and Environmental Microbiology.

[16]  R. Bélanger,et al.  Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa , 2005, Antimicrobial Agents and Chemotherapy.

[17]  B. Bartel,et al.  Auxin: regulation, action, and interaction. , 2005, Annals of botany.

[18]  P. Mayser,et al.  Pityriasis versicolor alba , 2005, Journal of the European Academy of Dermatology and Venereology : JEADV.

[19]  V. Wray,et al.  Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis , 2005, Applied Microbiology and Biotechnology.

[20]  T. Kulakovskaya,et al.  Characterization of an antifungal glycolipid secreted by the yeast Sympodiomycopsis paphiopedili. , 2004, FEMS yeast research.

[21]  R. Holliday Early studies on recombination and DNA repair in Ustilago maydis. , 2004, DNA repair.

[22]  K. Chung,et al.  Biosynthesis of Indole-3-Acetic Acid by the Gall-inducing Fungus Ustilago esculenta , 2004 .

[23]  G. Fink,et al.  Tyrosol is a quorum-sensing molecule in Candida albicans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Fink,et al.  The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Pooja Singh,et al.  Potential applications of microbial surfactants in biomedical sciences. , 2004, Trends in biotechnology.

[26]  W. Steglich,et al.  Pityriarubins, biologically active bis(indolyl)spirans from cultures of the lipophilic yeast Malassezia furfur. , 2004, Angewandte Chemie.

[27]  S. Leong,et al.  Characterization of siderophores from Ustilago maydis , 1989, Mycopathologia.

[28]  W. Steglich,et al.  Pityrialactone- a new fluorochrome from the tryptophan metabolism of M. alassezia furfur , 2004, Antonie van Leeuwenhoek.

[29]  K. Chung,et al.  Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. , 2003, FEMS microbiology letters.

[30]  M. Kurz,et al.  Ustilipids, acylated beta-D-mannopyranosyl D-erythritols from Ustilago maydis and Geotrichum candidum. , 2003, The Journal of antibiotics.

[31]  H. Isoda,et al.  Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers. , 2002, Journal of bioscience and bioengineering.

[32]  W. Steglich,et al.  Pityriacitrin – an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur , 2002, Archives of Dermatological Research.

[33]  B. Lindner,et al.  The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. , 2002, Biochimica et biophysica acta.

[34]  S. Leong,et al.  Characterization of the Ustilago maydis sid2 Gene, Encoding a Multidomain Peptide Synthetase in the Ferrichrome Biosynthetic Gene Cluster , 2001, Journal of bacteriology.

[35]  M. Bölker,et al.  Ustilago maydis--a valuable model system for the study of fungal dimorphism and virulence. , 2001, Microbiology.

[36]  J. Chory,et al.  A role for flavin monooxygenase-like enzymes in auxin biosynthesis. , 2001, Science.

[37]  M. Van Montagu,et al.  Leafy gall formation by Rhodococcus fascians. , 2001, Annual review of phytopathology.

[38]  T. Katsuragi,et al.  Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16 , 1999, Applied Microbiology and Biotechnology.

[39]  A. Sharon,et al.  Indole-3-Acetic Acid Biosynthesis inColletotrichum gloeosporioides f. sp.aeschynomene , 1998, Applied and Environmental Microbiology.

[40]  N. Arnold,et al.  Synthesis of fluorochromes and pigments in Malassezia furfur by use of tryptophan as the single nitrogen source , 1998, Mycoses.

[41]  M Frey,et al.  Analysis of a chemical plant defense mechanism in grasses. , 1997, Science.

[42]  L. Valinsky,et al.  The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. , 1997, Molecular plant-microbe interactions : MPMI.

[43]  F. Lottspeich,et al.  Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. , 1996, European journal of biochemistry.

[44]  O. Paredes-López,et al.  Huitlacoche (Ustilago maydis) as a food source--biology, composition, and production. , 1995, Critical reviews in food science and nutrition.

[45]  F. Banuett Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. , 1995, Annual review of genetics.

[46]  K. Snetselaar,et al.  Light and electron microscopy of Ustilago maydis hyphae in maize. , 1994 .

[47]  S. Leong,et al.  sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Hashimoto,et al.  TINEA VERSICOLOR: HISTOLOGIC AND ULTRASTRUCTURAL INVESTIGATION OF PIGMENTARY CHANGES , 1992, International journal of dermatology.

[49]  S. Leong,et al.  Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5-oxygenase gene , 1989, Journal of bacteriology.

[50]  Mahavir Singh,et al.  Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid , 1983 .

[51]  A. Fluharty,et al.  A mannose- and erythritol-containing glycolipid from Ustilago maydis. , 1969, Biochemistry.

[52]  P. H. List,et al.  [Ustilagine and other active constituents of maize smut. Ustilago maydis Corda]. , 1963, Arzneimittel-Forschung.

[53]  R. H. Hamilton,et al.  Chemical detection of 3-indolylacetic acid in Ustilago zeae tumors. , 1960, Biochimica et biophysica acta.

[54]  P. H. List Basische Pilzinhaltsstoffe. 6. Mitteilung 6‐Methoxybenzoxazolon‐(2) aus Ustilago maydis , 1959 .

[55]  R. Haskins,et al.  Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. , 1956, Canadian journal of biochemistry and physiology.

[56]  R. W. Reed,et al.  The antibacterial spectrum of ustilagic acid. , 1953, Canadian journal of medical sciences.

[57]  R. Lemieux BIOCHEMISTRY OF THE USTILAGINALES: VIII. THE STRUCTURES AND CONFIGURATIONS OF THE USTILIC ACIDS , 1953 .

[58]  J. Neilands A Crystalline Organo-iron Pigment from a Rust Fungus (Ustilago sphaerogena)1 , 1952 .

[59]  F. T. Wolf The Production of Indole Acetic Acid by Ustilago Zeae, and Its Possible Significance in Tumor Formation. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Haskins,et al.  BIOCHEMISTRY OF THE USTILAGINALES: VII. ANTIBIOTIC ACTIVITY OF USTILAGIC ACID , 1951 .

[61]  R. Lemieux The biochemistry of the ustilaginales. III. The degradation products and proof of the chemical heterogeneity of ustilagic acid. , 1951, Canadian journal of chemistry.

[62]  R. Haskins BIOCHEMISTRY OF THE USTILAGINALES: I. PRELIMINARY CULTURAL STUDIES OF USTILAGO ZEAE , 1950 .