Integrated 60 GHz Antenna, LNA and Fast ADC Architecture for Embedded Systems with Wireless Gbit Connectivity

With reference to an architecture for the full integration of a 60 GHz receiver in embedded systems with wireless gigabit connectivity, the paper presents the design of key building blocks such as: on-chip antenna, low noise amplifier (LNA) and a time-interleaved fast A/D converter (ADC) with AMBA AXI interface towards the digital baseband part. With respect to the state of the art the co-design of the on-chip antenna with the LNA, and the fast ADC architecture realized as a time-interleaved array of threshold-configuring SAR channels, represent new solutions optimized in terms of power consumption. Complexity and performance results in a 65-nm CMOS SOI technology, suitable also for digital systems integration, are presented. The performance and complexity results of the designed antenna, LNA and ADC are integrated in a system level simulator with those obtained by adopting known solutions for other receiver blocks (mixer, IF and baseband amplifiers and filters, frequency synthesizer) thus estimating the performance achievable with a whole 60 GHz receiver and digitization sub-system macrocell. The system-level estimated performances confirm the feasibility of a full-integrated receiver supporting short-range High Definition (HD) connectivity of several Gb/s with a Signal-to-Noise-Ratio compliant with WiGig and Wireless HD new standardization initiatives.

[1]  Laurent Dussopt,et al.  A 65nm CMOS fully integrated transceiver module for 60GHz wireless HD applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[2]  Baudouin Martineau Potentialités de la technologie CMOS 65nm SOI pour des applications sans fils en bande millimétrique , 2008 .

[3]  Duixian Liu,et al.  Single-element and phased-array transceiver chipsets for 60-ghz Gb/s communications , 2011, IEEE Communications Magazine.

[4]  Thomas Skotnicki,et al.  Competitive SOC with UTBB SOI , 2011, IEEE 2011 International SOI Conference.

[5]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.

[6]  A. Siligaris,et al.  CMOS SOI technology for WPAN. Application to 60 GHz LNA , 2008, 2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial.

[7]  F. Gianesello,et al.  65 nm HR SOI CMOS Technology: emergence of Millimeter-Wave SoC , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[8]  Chin-Sean Sum,et al.  IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s , 2011, IEEE Communications Magazine.

[9]  Philip Constantinou,et al.  Indoor channel modeling at 60 GHz for wireless LAN applications , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[10]  Chin-Sean Sum,et al.  Physical layer design and performance analysis on multi-Gbps millimeter-wave WLAN system , 2010, 2010 IEEE International Conference on Communication Systems.

[11]  J. Nurmi,et al.  Comparison of bulk and SOI CMOS technologies in a DSP processor circuit implementation , 2001, ICM 2001 Proceedings. The 13th International Conference on Microelectronics..

[12]  A. Niknejad Siliconization of 60 GHz , 2010, IEEE Microwave Magazine.

[13]  Alberto L. Sangiovanni-Vincentelli,et al.  A 6-bit 50-MS/s threshold configuring SAR ADC in 90-nm digital CMOS , 2009, 2009 Symposium on VLSI Circuits.

[14]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[15]  James B. Kuo,et al.  Low-Voltage SOI CMOS VLSI Devices and Circuits , 2001 .

[16]  T. Iwamatsu,et al.  Silicon on thin BOX (SOTB) CMOS for ultralow standby power with forward-biasing performance booster , 2008, ESSDERC 2008 - 38th European Solid-State Device Research Conference.

[17]  Laurent Dussopt,et al.  A 65-nm CMOS Fully Integrated Transceiver Module for 60-GHz Wireless HD Applications , 2011, IEEE Journal of Solid-State Circuits.

[18]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[19]  Ali M. Niknejad,et al.  0-60 GHz in four years: 60 GHz RF in digital CMOS , 2007, IEEE Solid-State Circuits Newsletter.

[20]  L. Fanucci,et al.  60-GHz single-chip integrated antenna and Low Noise Amplifier in 65-nm CMOS SOI technology for short-range wireless Gbits/s applications , 2011, 2011 International Conference on Applied Electronics.

[21]  Luca Fanucci,et al.  Architectural Exploration and Design of Time-Interleaved SAR Arrays for Low-Power and High Speed A/D Converters , 2009, IEICE Trans. Electron..

[22]  Yo-Sheng Lin,et al.  Implementation of Perfect-Magnetic-Coupling Ultra-Low-Loss Transformer in Standard RFCMOS Technology , 2005, 2005 IEEE Conference on Electron Devices and Solid-State Circuits.

[23]  Luca Fanucci,et al.  Low-Complexity Link Microarchitecture for Mesochronous Communication in Networks-on-Chip , 2008, IEEE Transactions on Computers.

[24]  Osamu Takahashi,et al.  Migration of Cell Broadband Engine from 65nm SOI to 45nm SOI , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[25]  Egidio Ragonese,et al.  Design methodology for the optimization of transformer-loaded RF circuits , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Oksana Bespalova Future of multi-gigabit wireless communications , 2013 .

[27]  Wei Deng,et al.  Wireless wire-the 60 GHz ultra-low power radio system , 2009, 2009 IEEE Radio and Wireless Symposium.

[28]  Dcita Radiocommunications (Low Interference Potential Devices) Class Licence Variation 2005 (No. 1) , 2005 .

[29]  A. Siligaris,et al.  Employing 65 nm CMOS SOI for 60 GHz WPAN applications , 2008, 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems.

[30]  Luca Fanucci,et al.  VLSI architecture for a low-power video codec system , 2002 .

[31]  A. Boni,et al.  A 6-bit, 1.2 GHz Interleaved SAR ADC in 90nm CMOS , 2006, 2006 Ph.D. Research in Microelectronics and Electronics.

[32]  Chiu Ngo,et al.  A 60 GHz wireless network for enabling uncompressed video communication , 2008, IEEE Communications Magazine.

[33]  Steven J. Vaughan-Nichols,et al.  Gigabit Wi-Fi Is on Its Way , 2010, Computer.

[34]  S. Tedjini,et al.  Silicon integrated antenna developments up to 80 GHz for millimeter wave wireless links , 2005, The European Conference on Wireless Technology, 2005..

[35]  Ulrich Langmann,et al.  A 22.3dB Voltage Gain 6.1dB NF 60GHz LNA in 65nm CMOS with Differential Output , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[36]  Domenico Zito,et al.  60-GHz transceivers for wireless HD uncompressed video communication in nano-era CMOS technology , 2010, Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference.

[37]  J. Saily,et al.  UC-EBG on LTCC for 60-GHz Frequency Band Antenna Applications , 2009, IEEE Transactions on Antennas and Propagation.

[38]  Mohammed Ismail,et al.  A 60 GHz receiver front-end in 65 nm CMOS , 2011 .

[39]  Luca Fanucci,et al.  Automatic Synthesis of Cost Effective FFT/IFFT Cores for VLSI OFDM Systems , 2008, IEICE Trans. Electron..