Mantle discontinuities under southern Africa from precursors to P′ P′df

We investigate the reflection properties of upper‐mantle discontinuities beneath southern Africa using precursors to the df branch of PKPPKP (P′ P′). The P′ P′df branch is weaker than the ab and bc branches, but it does not have the complication of a caustic and appears across a wider distance range. Stacks from hundreds of short‐period seismograms recorded in California from the March 9, 1994 Tonga earthquake (Mw = 7.6) show an ∼5% reflection (at 3.5 s dominate period) from 660‐km depth indicating a sharp “660” under southern Africa. A 3.5 s period reflection from 410‐km depth is also visible in these stacks, but only ∼2% the strength of P′ P′df. This result contrasts with the observation of the “410” and the “660” reflecting comparable amounts of high‐frequency energy under the Indian Ocean [Benz and Vidale, 1993a], indicating either a diffuse “410” boundary under southern Africa or global variations in the impedance change across the “410”. A 1.5 s period reflection may indicate the existence of fine‐scale heterogeneity near 320‐km depth. Reflectivity synthetic seismograms also show that a previously claimed reflection from 785‐km depth has the more likely explanation as PcPPKP.

[1]  D. Helmberger,et al.  Fine structure of the 410‐km discontinuity , 1998 .

[2]  P. Shearer,et al.  observations of high—frequency scattered energy associated with the core PhasePKKP , 1998 .

[3]  L. Stixrude Structure and sharpness of phase transitions and mantle discontinuities , 1997 .

[4]  R. Kind,et al.  The Nature of the 660-Kilometer Upper-Mantle Seismic Discontinuity from Precursors to the PP Phase , 1996, Science.

[5]  E. Knittle,et al.  The stability and equation of state of majoritic garnet synthesized from natural basalt at mantle conditions , 1996 .

[6]  B. Wood,et al.  410 km discontinuity sharpness and the form of the olivine α-β phase diagram , 1996 .

[7]  F. Neele Sharp 400‐km discontinuity from short‐period P reflections , 1996 .

[8]  P. Shearer Transition zone velocity gradients and the 520-km discontinuity , 1996 .

[9]  B. Romanowicz,et al.  P′P′ Precursors Under Africa: Evidence for Mid-Mantle Reflectors , 1995, Science.

[10]  J. Vidale,et al.  The 410‐km‐depth discontinuity: A sharpness estimate from near‐critical reflections , 1995 .

[11]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[12]  C. Bina,et al.  Frequency dependence of the visibility and depths of mantle seismic discontinuities , 1994 .

[13]  K. Hirahara,et al.  the thickness of upper mantle discontinuities, as inferred from short‐period J‐array data , 1994 .

[14]  J. Vidale,et al.  The Temporal Distribution of Seismic Radiation During Deep Earthquake Rupture , 1994, Science.

[15]  K. Priestley,et al.  Upper-mantle velocity structure beneath the Siberian platform , 1994 .

[16]  D. Stevenson,et al.  Can sharp seismic discontinuities be caused by non-equilibrium phase transformations? , 1994 .

[17]  J. Vidale,et al.  Sharpness of upper-mantle discontinuities determined from high-frequency reflections , 1993, Nature.

[18]  R. Kind,et al.  Sharpness of the mantle discontinuities , 1993 .

[19]  J. Vidale,et al.  Upper-mantle seismic discontinuities and the thermal structure of subduction zones , 1992, Nature.

[20]  J. Gerald,et al.  Spinel elasticity and seismic structure of the transition zone of the mantle , 1991, Nature.

[21]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[22]  L. Wald,et al.  Lg and Rg waves on the California Regional Networks from the December 23, 1985 Nahanni Earthquake , 1991 .

[23]  I. S. Sacks,et al.  Precursors to P′P′ re-examined using broad-band data , 1989 .

[24]  Alexandra Navrotsky,et al.  Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .

[25]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[26]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[27]  Ichiro Nakanishi,et al.  Reflections of P′P′ from upper mantle discontinuities beneath the Mid-Atlantic Ridge , 1988 .

[28]  M. Walck The P-wave upper mantle structure beneath an active spreading centre: the Gulf of California , 1984 .

[29]  A. C. Lees,et al.  Reflection properties of phase transition and compositional change models of the 670‐km discontinuity , 1983 .

[30]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[31]  A. L. Hales,et al.  A compressional velocity distribution for the upper mantle , 1980 .

[32]  R. Adams Reflections from discontinuities beneath antarctica , 1971, Bulletin of the Seismological Society of America.

[33]  D. L. Anderson,et al.  Reflection of P′P′ seismic waves from discontinuities in the mantle , 1970 .

[34]  E. A. Flinn,et al.  Seismic Waves Reflected from Discontinuities within Earth's Upper Mantle , 1969, Science.

[35]  S. Sipkin,et al.  Seismic evidence for silicate melt atop the 410-km mantle discontinuity , 1994, Nature.

[36]  A. E. Ringwood,et al.  Phase transformations in the mantle , 1968 .