The structure and function of G-protein-coupled receptors

[1]  J. Baker,et al.  The selectivity of β‐adrenoceptor agonists at human β1‐, β2‐ and β3‐adrenoceptors , 2010, British journal of pharmacology.

[2]  B. Hille,et al.  Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support , 2016, PloS one.

[3]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[4]  Peter Kolb,et al.  Structure-based discovery of β2-adrenergic receptor ligands , 2009, Proceedings of the National Academy of Sciences.

[5]  Viktor Hornak,et al.  Helix Movement is Coupled to Displacement of the Second Extracellular Loop in Rhodopsin Activation , 2009, Nature Structural &Molecular Biology.

[6]  Arthur Christopoulos,et al.  Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders , 2009, Nature Reviews Drug Discovery.

[7]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[8]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[9]  Thomas Huber,et al.  Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. , 2008, Journal of molecular biology.

[10]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[11]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[12]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[13]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[14]  Yoko Shibata,et al.  Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form , 2008, Proceedings of the National Academy of Sciences.

[15]  M. von Zastrow,et al.  Regulation of GPCRs by endocytic membrane trafficking and its potential implications. , 2008, Annual review of pharmacology and toxicology.

[16]  J. Klein-Seetharaman,et al.  Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy , 2008, Journal of biomolecular NMR.

[17]  W. Hubbell,et al.  Sequence of late molecular events in the activation of rhodopsin , 2007, Proceedings of the National Academy of Sciences.

[18]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[19]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[20]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[21]  S. Rasmussen,et al.  A monoclonal antibody for G protein–coupled receptor crystallography , 2007, Nature Methods.

[22]  Robert J. Lefkowitz,et al.  A unique mechanism of β-blocker action: Carvedilol stimulates β-arrestin signaling , 2007, Proceedings of the National Academy of Sciences.

[23]  Manfred Burghammer,et al.  Crystal structure of a thermally stable rhodopsin mutant. , 2007, Journal of molecular biology.

[24]  M. Bouvier,et al.  The evasive nature of drug efficacy: implications for drug discovery. , 2007, Trends in pharmacological sciences.

[25]  Xavier Deupi,et al.  Conformational complexity of G-protein-coupled receptors. , 2007, Trends in pharmacological sciences.

[26]  Leonardo Pardo,et al.  The Role of Internal Water Molecules in the Structure and Function of the Rhodopsin Family of G Protein‐Coupled Receptors , 2007, Chembiochem : a European journal of chemical biology.

[27]  J. Violin,et al.  A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Krzysztof Palczewski,et al.  Crystal structure of a photoactivated deprotonated intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[29]  Xavier Deupi,et al.  Coupling ligand structure to specific conformational switches in the β2-adrenoceptor , 2006, Nature chemical biology.

[30]  Helgi B. Schiöth,et al.  G Protein‐coupled Receptors in the Human Genome , 2006 .

[31]  Prashant V Desai,et al.  Homology modeling of G-protein-coupled receptors and implications in drug design. , 2006, Current medicinal chemistry.

[32]  A. IJzerman,et al.  Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. , 2006, Trends in pharmacological sciences.

[33]  Olivier Lichtarge,et al.  β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor* , 2006, Journal of Biological Chemistry.

[34]  Olivier Lichtarge,et al.  beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. , 2006, The Journal of biological chemistry.

[35]  Xavier Deupi,et al.  Probing the β2 Adrenoceptor Binding Site with Catechol Reveals Differences in Binding and Activation by Agonists and Partial Agonists* , 2005, Journal of Biological Chemistry.

[36]  P. Insel,et al.  Caveolae and Lipid Rafts: G Protein‐Coupled Receptor Signaling Microdomains in Cardiac Myocytes , 2005, Annals of the New York Academy of Sciences.

[37]  J. Bowie,et al.  Crystallization of bacteriorhodopsin from bicelle formulations at room temperature , 2005, Protein science : a publication of the Protein Society.

[38]  Jillian G. Baker,et al.  The selectivity of β‐adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors , 2005 .

[39]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[40]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[41]  Yang Xiang,et al.  Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. , 2004, The Journal of biological chemistry.

[42]  M. Bouvier,et al.  Roles of G‐protein‐coupled receptor dimerization , 2004, EMBO reports.

[43]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[44]  Pascale G. Charest,et al.  β-Arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[46]  H Gobind Khorana,et al.  Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. , 2003, Advances in protein chemistry.

[47]  Pascale G. Charest,et al.  Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[49]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[50]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Tsujimoto,et al.  Beta(1)-selective agonist (-)-1-(3,4-dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] differentially interacts with key amino acids responsible for beta(1)-selective binding in resting and active states. , 2002, The Journal of pharmacology and experimental therapeutics.

[52]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[53]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[54]  R. Vogel,et al.  Conformations of the Active and Inactive States of Opsin* , 2001, The Journal of Biological Chemistry.

[55]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[56]  P Ghanouni,et al.  Functionally Different Agonists Induce Distinct Conformations in the G Protein Coupling Domain of the β2Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[57]  P Ghanouni,et al.  Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Krzysztof Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Science.

[59]  J. Ballesteros,et al.  The Forgotten Serine , 2000, The Journal of Biological Chemistry.

[60]  K. Palczewski,et al.  X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. , 2000, Journal of structural biology.

[61]  J. Ballesteros,et al.  The Forgotten Serine A CRITICAL ROLE FOR Ser-203 5.42 IN LIGAND BINDING TO AND ACTIVATION OF THE b 2 -ADRENERGIC RECEPTOR* , 2000 .

[62]  E. Lakatta,et al.  Recent Advances in Cardiac b2-Adrenergic Signal Transduction , 1999 .

[63]  P Ghanouni,et al.  Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. , 1999, Molecular pharmacology.

[64]  P. Devreotes,et al.  Desensitization of G-protein-coupled Receptors , 1999, The Journal of Biological Chemistry.

[65]  E. Lakatta,et al.  Recent advances in cardiac beta(2)-adrenergic signal transduction. , 1999, Circulation research.

[66]  G. Schertler,et al.  Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. , 1998, Journal of molecular biology.

[67]  K. Jacobson,et al.  Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. , 1997, Journal of medicinal chemistry.

[68]  H. Khorana,et al.  Requirement of Rigid-Body Motion of Transmembrane Helices for Light Activation of Rhodopsin , 1996, Science.

[69]  M. Caron,et al.  The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. , 1995, Biochemistry.

[70]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[71]  R. Lefkowitz,et al.  Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. , 1994, Molecular pharmacology.

[72]  P. Chidiac,et al.  Inverse agonist activity of beta-adrenergic antagonists. , 1994, Molecular pharmacology.

[73]  Gebhard F. X. Schertler,et al.  Projection structure of rhodopsin , 1993, Nature.

[74]  D. Oprian,et al.  Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. , 1992, Biochemistry.

[75]  C. Strader,et al.  Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. , 1989, The Journal of biological chemistry.

[76]  C. Strader,et al.  Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. , 1988, The Journal of biological chemistry.

[77]  Brian K. Kobilka,et al.  Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin , 1986, Nature.

[78]  R. Lefkowitz,et al.  Adrenergic receptors in the heart. , 1982, Annual review of physiology.

[79]  R. Lefkowitz,et al.  A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. , 1980, The Journal of biological chemistry.

[80]  Catherine,et al.  dentific ~ tion f Two Serine Residues Involved in Agonist Activation of the & Adrenergic Receptor ” , 2022 .