Wiener Number of Vertex-weighted Graphs and a Chemical Application

The Wiener number W(G) of a graph G is the sum of distances between all pairs of vertices of G. If (G, w) is a vertex-weighted graph, then the Wiener number W(G, w) of (G, w) is the sum, over all pairs of vertices, of products of weights of the vertices and their distance. For G being a partial binary Hamming graph, a formula is given for computing W(G, w) in terms of a binary Hamming labeling of G. This result is applied to prove that W(PH) = W(HS) + 36W(ID), where PH is a phenylene, HS a pertinently vertex-weighted hexagonal squeeze of PH, and ID the inner dual of the hexagonal squeeze.

[1]  S. J. Cyvin,et al.  Introduction to the theory of benzenoid hydrocarbons , 1989 .

[2]  Ingo Althöfer Average distances in undirected graphs and the removal of vertices , 1990, J. Comb. Theory, Ser. B.

[3]  Ján Plesník,et al.  On the sum of all distances in a graph or digraph , 1984, J. Graph Theory.

[4]  Peter Dankelmann Average Distance and Independence Number , 1994, Discret. Appl. Math..

[5]  István Lukovits Decomposition of the Wiener topological index. Application to drug–receptor interactions , 1988 .

[6]  J. K. Doyle,et al.  Mean distance in a graph , 1977, Discret. Math..

[7]  K. Vollhardt,et al.  The phenylenes , 1993 .

[8]  Wilfried Imrich,et al.  On the Complexity of Recognizing Hamming Graphs and Related Classes of Graphs , 1996, Eur. J. Comb..

[9]  Horst Sachs,et al.  Perfect matchings in hexagonal systems , 1984, Comb..

[10]  Franz Aurenhammer,et al.  Recognizing Binary Hamming Graphs in O(n² log n) Time , 1990, WG.

[11]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[12]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[13]  I. Gutmana,et al.  Wiener Indices and Molecular Surfaces , 1995 .

[14]  Ivan Gutman,et al.  Topological properties of benzenoid systems , 1977 .

[15]  Vo D. Chepoi,et al.  Isometric subgraphs of Hamming graphs and d-convexity , 1988 .

[16]  Frank Harary,et al.  Status and Contrastatus , 1959 .

[17]  L. Benedetti,et al.  A theoretical and topological study on the electroreduction of chlorobenzene derivatives , 1990 .

[18]  D. H. Rouvray,et al.  Novel Applications of Topological Indices. 1. Prediction of the Ultrasonic Sound Velocity in Alkanes and Alcohols , 1986 .

[19]  R. Graham,et al.  On isometric embeddings of graphs , 1985 .

[20]  Sherif El-Basil,et al.  Novel applications of topological indices: Part 4. Correlation of arene absorption spectra with the Randić molecular connectivity index , 1988 .

[21]  Padmakar V. Khadikar,et al.  Novel applications of topological indices. I—correlation of edge shifts in x-ray absorption with wiener indices , 1995 .

[22]  Ivan Gutman,et al.  Selected properties of the Schultz molecular topological index , 1994, J. Chem. Inf. Comput. Sci..

[23]  Ivan Gutman Easy Method for the Calculation of the Algebraic Structure Count of Phenylenes. , 1993 .

[24]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[25]  Russell Merris,et al.  An edge version of the matrix-tree theorem and the wiener index , 1989 .

[26]  Roger C. Entringer,et al.  Distance in graphs , 1976 .

[27]  Ottorino Ori,et al.  A topological study of the structure of the C76 fullerene , 1992 .

[28]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[29]  N. Trinajstic,et al.  The Wiener Index: Development and Applications , 1995 .

[30]  Ivan Gutman,et al.  On the sum of all distances in composite graphs , 1994, Discret. Math..

[31]  Fuji Zhang,et al.  Perfect matchings in hexagonal systems , 1985, Graphs Comb..

[32]  Elke Wilkeit,et al.  Isometric embeddings in Hamming graphs , 1990, J. Comb. Theory, Ser. B.

[33]  Fuji Zhang,et al.  When each hexagon of a hexagonal system covers it , 1991, Discret. Appl. Math..

[34]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[35]  Bojan Mohar,et al.  Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations , 1995, J. Chem. Inf. Comput. Sci..

[36]  Peter Winkler Mean distance in a tree , 1990, Discret. Appl. Math..

[37]  I. Gutman,et al.  Some recent results in the theory of the Wiener number , 1993 .

[38]  Chen Rong-si,et al.  Perfect matchings in hexagonal systems , 1985 .