Femtosecond Laser Processing of Biodegradable Polymers

[1]  M. Oujja,et al.  Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation , 2007 .

[2]  Dave F. Farson,et al.  Vascular Wall Engineering Via Femtosecond Laser Ablation: Scaffolds with Self-Containing Smooth Muscle Cell Populations , 2011, Annals of Biomedical Engineering.

[3]  Jian Yu,et al.  Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA). , 2015, Optics express.

[4]  Heungsoo Shin,et al.  Creating Hierarchical Topographies on Fibrous Platforms Using Femtosecond Laser Ablation for Directing Myoblasts Behavior. , 2016, ACS applied materials & interfaces.

[5]  Boris N. Chichkov,et al.  Three dimensional microstructuring of biopolymers by femtosecond laser irradiation , 2009 .

[6]  Koji Sugioka,et al.  Three-dimensional femtosecond laser processing for lab-on-a-chip applications , 2018 .

[7]  F. Wen,et al.  Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. , 2012, Acta biomaterialia.

[8]  Zengbo Wang,et al.  Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications , 2005 .

[9]  V. Svorcik,et al.  Surface ablation of PLLA induced by KrF excimer laser , 2013 .

[10]  Guoqiang Xie,et al.  Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser , 2014 .

[11]  M. Terakawa,et al.  Femtosecond laser irradiation of the fluorescent molecules-loaded poly(lactic-co-glycolic acid) , 2017 .

[12]  I. Păun,et al.  Laser micro-patterning of biodegradable polymer blends for tissue engineering , 2014, Journal of Materials Science.

[13]  L. Ceseracciu,et al.  Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation. , 2015, Materials science & engineering. C, Materials for biological applications.

[14]  Yu-Chao Wang,et al.  Surface deformation of gold nanorod-loaded poly(DL-lactide-co-glycolide) nanoparticles after near infrared irradiation: an active and controllable drug release system , 2010 .

[15]  Sylvain Lazare,et al.  Modification of polymer surfaces by far-ultraviolet radiation of low and high (laser) intensities , 1985 .

[16]  R. Szoszkiewicz,et al.  FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response , 2016 .

[17]  Linbo Wu,et al.  Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. , 2005, Journal of biomedical materials research. Part A.

[18]  Iban Quintana,et al.  Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response , 2011 .

[19]  Klaus Stolberg,et al.  IR and green femtosecond laser machining of heat sensitive materials for medical devices at micrometer scale , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[20]  Bodil Braren,et al.  Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses , 1987 .

[21]  Jian Yu,et al.  Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. , 2012, Acta biomaterialia.

[22]  Wai Yee Yeong,et al.  Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer. , 2010, Tissue engineering. Part C, Methods.

[23]  Alina Sionkowska,et al.  Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime , 2005 .

[24]  N. Vasanthan,et al.  Morphological changes of annealed poly‐ε‐caprolactone by enzymatic degradation with lipase , 2010 .

[25]  Wai Yee Yeong,et al.  Annealing of Biodegradable Polymer Induced by Femtosecond Laser Micromachining , 2010 .

[26]  Ronald Holzwarth,et al.  Ablation-cooled material removal with ultrafast bursts of pulses , 2016, Nature.

[27]  M. Terakawa,et al.  Biodegradability of poly(lactic-co-glycolic acid) and poly(l-lactic acid) after deep-ultraviolet femtosecond and nanosecond laser irradiation , 2017 .

[28]  Shaochen Chen,et al.  Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. , 2005, Biomaterials.

[29]  Y. Yao,et al.  Effect of Laser-Induced Crystallinity Modification on Biodegradation Profile of Poly(L-Lactic Acid) , 2014 .

[30]  Mitsuhiro Terakawa,et al.  Femtosecond laser induced periodic surface structure on poly-L-lactic acid. , 2015, Optics express.

[31]  Shaochen Chen,et al.  Laser-based microscale patterning of biodegradable polymers for biomedical applications , 2003 .

[32]  I. Bliznakova,et al.  Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses , 2014 .

[33]  A. Miller,et al.  The impact of chemical composition on the degradation kinetics of poly(lactic-co-glycolic) acid copolymers cast films in phosphate buffer solution , 2012 .

[34]  M. Stuke,et al.  Femtosecond uv excimer laser ablation , 1987 .

[35]  Lay Poh Tan,et al.  Human mesenchymal stem-cell behaviour on direct laser micropatterned electrospun scaffolds with hierarchical structures. , 2013, Macromolecular bioscience.

[36]  Y. Yao,et al.  Effect of drug loading and laser surface melting on drug release profile from biodegradable polymer , 2013 .

[37]  Stefan Nolte,et al.  Micromachining using femtosecond lasers , 2000, International Symposium on Laser Precision Microfabrication.

[38]  Waldemar Mróz,et al.  Laser induced surface modification of polylactide , 2012 .

[39]  M. Oujja,et al.  Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration , 2012 .

[40]  H. Tsuji,et al.  Enzymatic Degradation of Poly(l-Lactic Acid): Effects of UV Irradiation , 2006 .

[41]  A. Kietzig,et al.  Optical and chemical effects governing femtosecond laser-induced structure formation on polymer surfaces , 2018 .

[42]  Shan Sun,et al.  3D femtosecond laser patterning of collagen for directed cell attachment. , 2005, Biomaterials.

[43]  Kunio Awazu,et al.  Gelatin ablation wavelength dependency in the range of 5.6–6.7 μm using a mid-infrared Free Electron Laser , 2003 .

[44]  A Ranella,et al.  Direct laser writing of 3D scaffolds for neural tissue engineering applications , 2011, Biofabrication.

[45]  Eiji Ikada,et al.  Photo- and Bio-degradable Polyesters. Photodegradation Behaviors of Aliphatic Polyesters , 1997 .

[46]  F. He,et al.  Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias , 2017, Scientific Reports.

[47]  Arkadiusz J. Antończak,et al.  Optimization of femtosecond laser micromachining of polylactide and PLLA/HAp composite , 2018, LASE.

[48]  Mitsuhiro Terakawa,et al.  Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules , 2016, Journal of biomedical optics.

[49]  V. Matylitsky,et al.  Laser micromachining of bio-absorbable polymers: Impact of the laser process parameters on the machining throughput and quality , 2013 .

[50]  H. Declercq,et al.  Selective cell response on natural polymer bio-interfaces textured by femtosecond laser , 2018 .

[51]  Mohamed Oujja,et al.  Submicron foaming in gelatine by nanosecond and femtosecond pulsed laser irradiation , 2007 .

[52]  M. Castillejo,et al.  Femtosecond laser processing of biopolymers at high repetition rate. , 2008, Physical chemistry chemical physics : PCCP.

[53]  Ping-Han Wu,et al.  Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation , 2012, International journal of nanomedicine.

[54]  Hae Woon Choi,et al.  Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation , 2007 .

[55]  Mitsuhiro Terakawa,et al.  Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation , 2016, Scientific Reports.

[56]  Mohamed Oujja,et al.  Laser-induced periodic surface structuring of biopolymers , 2013 .

[57]  J. Toca-Herrera,et al.  Ultra-fast laser microprocessing of medical polymers for cell engineering applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[58]  S. Hatzikiriakos,et al.  Fabrication of Micro/Nano Patterns on Polymeric Substrates Using Laser Ablation Methods to Control Wettability Behaviour: A Critical Review , 2017, Progress in Adhesion and Adhesives.

[59]  Hae Woon Choi,et al.  Micropatterning and characterization of electrospun poly(ε‐caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications , 2011, Biotechnology and bioengineering.

[60]  H. Exner,et al.  Generation of nano-voids inside polylactide using femtosecond laser radiation , 2017 .