A note on tensor chain approximation

This paper deals with the approximation of $$d$$d-dimensional tensors, as discrete representations of arbitrary functions $$f(x_1,\ldots ,x_d)$$f(x1,…,xd) on $$[0,1]^d$$[0,1]d, in the so-called tensor chain format. The main goal of this paper is to show that the construction of a tensor chain approximation is possible using skeleton/cross approximation type methods. The complete algorithm is described, computational issues are discussed in detail and the complexity of the algorithm is shown to be linear in $$d$$d. Some numerical examples are given to validate the theoretical results.

[1]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[2]  Kishore Kumar Naraparaju,et al.  Generalized cross approximation for 3d-tensors , 2011, Comput. Vis. Sci..

[3]  S. Goreinov,et al.  How to find a good submatrix , 2010 .

[4]  Charles A. Micchelli,et al.  Some Problems in the Approximation of Functions of Two Variables and n-Widths of Integral Operators , 1978 .

[5]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[6]  S. Goreinov,et al.  On cross approximation of multi-index arrays , 2008 .

[7]  Yang Qi,et al.  On the geometry of tensor network states , 2011, Quantum Inf. Comput..

[8]  Eugene E. Tyrtyshnikov,et al.  Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..

[9]  Boris N. Khoromskij,et al.  Fast and accurate 3D tensor calculation of the Fock operator in a general basis , 2012, Comput. Phys. Commun..

[10]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[11]  Severnyi Kavkaz Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .

[12]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[13]  W. Greub Linear Algebra , 1981 .

[14]  Laurent Demanet,et al.  Sublinear Randomized Algorithms for Skeleton Decompositions , 2011, SIAM J. Matrix Anal. Appl..

[15]  W. Hackbusch,et al.  Black Box Low Tensor-Rank Approximation Using Fiber-Crosses , 2009 .

[16]  Jan Schneider-Barnes,et al.  Error estimates for two-dimensional cross approximation , 2010, J. Approx. Theory.

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[19]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[20]  S. Friedland,et al.  Fast low rank approximations of matrices and tensors , 2011 .

[21]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[22]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[23]  Ivan V. Oseledets,et al.  Fast adaptive interpolation of multi-dimensional arrays in tensor train format , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  Mario Bebendorf,et al.  Adaptive Cross Approximation of Multivariate Functions , 2011 .

[26]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[27]  A. Cichocki,et al.  Generalizing the column–row matrix decomposition to multi-way arrays , 2010 .

[28]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[29]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[30]  Ivan Oseledets,et al.  Fast solution of multi-dimensional parabolic problems in the TT/QTT-format with initial application to the Fokker-Planck equation , 2011 .

[31]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[32]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[33]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[34]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[35]  X. Zhu,et al.  Randomised pseudo-skeleton approximation and its application in electromagnetics , 2011 .

[36]  Petros Drineas,et al.  Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.

[37]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .