Approximate Solutions and α-Well-Posedness for Variational Inequalities and Nash Equilibria

In this paper a new concept of well-posedness for variational inequalities and Nash equilibria, termed α-well-posedness, is presented. We give conditions under which a variational inequality is a-well-posed and we derive a result for Nash equilibria.

[1]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[2]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[3]  Fioravante Patrone,et al.  A New Approach To Tikhonov Well-Posedness For Nash Equilibria ∗ , 1997 .

[4]  Fioravante Patrone,et al.  A characterization of tyhonov well-posedness for minimum problems, with applications to variational inequalities (∗) , 1981 .

[5]  A. Auslender Optimisation : méthodes numériques , 1976 .

[6]  M. Fukushima Merit Functions for Variational Inequality and Complementarity Problems , 1996 .

[7]  Zhi-Quan Luo,et al.  Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints , 1996, Math. Program..

[8]  F. Giannessi,et al.  Nonlinear Optimization and Applications , 1996, Springer US.

[9]  G. Leitmann On generalized Stackelberg strategies , 1978 .

[10]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .

[11]  M. Beatrice Lignola,et al.  Well-posedness for Optimization Problems with Constraints defined by Variational Inequalities having a unique solution , 2000, J. Glob. Optim..

[12]  J. Morgan,et al.  Approximate solutions to variational inequalities and applications , 1995 .

[13]  J. Morgan,et al.  Mixed Strategies for Hierarchical Zero-Sum Games , 2001 .

[14]  A. Haurie,et al.  Sequential Stackelberg equilibria in two-person games , 1985 .

[15]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[16]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..

[17]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .