A biobjective approach to recoverable robustness based on location planning

Finding robust solutions of an optimization problem is an important issue in practice, and various concepts on how to define the robustness of a solution have been suggested. The idea of recoverable robustness requires that a solution can be recovered to a feasible one as soon as the realized scenario becomes known. The usual approach in the literature is to minimize the objective function value of the recovered solution in the nominal or in the worst case.

[1]  Anita Schöbel,et al.  An Empirical Analysis of Robustness Concepts for Timetabling , 2010, ATMOS.

[2]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[3]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[4]  Paolo Toth,et al.  Delay-Robust Event Scheduling , 2014, Oper. Res..

[5]  Zvi Drezner,et al.  The Weber Problem , 2002 .

[6]  George O. Wesolowsky,et al.  Locating facilities by minimax relative to closest points of demand areas , 2002, Comput. Oper. Res..

[7]  Anita Schöbel,et al.  Generalized light robustness and the trade-off between robustness and nominal quality , 2014, Math. Methods Oper. Res..

[8]  Vincent T'Kindt,et al.  A two-stage robustness approach to evacuation planning with buses , 2015 .

[9]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[10]  Pierre Hansen,et al.  Locating Objects in the Plane Using Global Optimization Techniques , 2009, Math. Oper. Res..

[11]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[12]  Jean-Luc Prigent,et al.  Portfolio Optimization and Performance Analysis , 2007 .

[13]  Daniele Frigioni,et al.  Robust Algorithms and Price of Robustness in Shunting Problems , 2007, ATMOS.

[14]  Vishal Gupta,et al.  Data-driven robust optimization , 2013, Math. Program..

[15]  George O. Wesolowsky,et al.  Minisum Location with Closest Euclidean Distances , 2002, Ann. Oper. Res..

[16]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[17]  Rolf H. Möhring,et al.  The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications , 2009, Robust and Online Large-Scale Optimization.

[18]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[19]  Jörg Fliege,et al.  Generalized Goal Programming: polynomial methods and applications , 2002, Math. Program..

[20]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[21]  Yaroslav D. Sergeyev,et al.  Lipschitz Global Optimization , 2011 .

[22]  Adam Kasperski,et al.  Robust recoverable and two-stage selection problems , 2015, Discret. Appl. Math..

[23]  Kresimir Mihic,et al.  Wasserstein Distance and the Distributionally Robust TSP , 2018, Oper. Res..

[24]  Matteo Fischetti,et al.  Light Robustness , 2009, Robust and Online Large-Scale Optimization.

[25]  George O. Wesolowsky,et al.  Note: Facility location with closest rectangular distances , 2000 .

[26]  Anita Schöbel,et al.  A Scenario-Based Approach for Robust Linear Optimization , 2011, TAPAS.

[27]  Justo Puerto,et al.  Location Theory - A Unified Approach , 2005 .

[28]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[29]  R. Horst,et al.  DC Programming: Overview , 1999 .

[30]  Arie M. C. A. Koster,et al.  Recoverable robust knapsacks: the discrete scenario case , 2011, Optim. Lett..

[31]  Nimrod Megiddo,et al.  The Weighted Euclidean 1-Center Problem , 1983, Math. Oper. Res..

[32]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[33]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[34]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[35]  Anita Schöbel,et al.  Algorithm Engineering in Robust Optimization , 2016, Algorithm Engineering.

[36]  Sebastian Stiller,et al.  Extending Concepts of Reliability - Network Creation Games, Real-time Scheduling, and Robust Optimization , 2009 .

[37]  Marc Goerigk,et al.  Algorithms and Concepts for Robust Optimization , 2013 .

[38]  Maria Grazia Speranza,et al.  On the effectiveness of scenario generation techniques in single-period portfolio optimization , 2009, Eur. J. Oper. Res..

[39]  Justo Puerto,et al.  An Approach to Location Models Involving Sets as Existing Facilities , 2003, Math. Oper. Res..

[40]  Daniele Frigioni,et al.  Recoverable robust timetabling for single delay: Complexity and polynomial algorithms for special cases , 2009, J. Comb. Optim..

[41]  Han Hoogeveen,et al.  Recoverable Robustness by Column Generation , 2011, ESA.

[42]  Anita Schöbel,et al.  Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling , 2014, Comput. Oper. Res..

[43]  James E. Ward,et al.  Using Block Norms for Location Modeling , 1985, Oper. Res..

[44]  Leo G. Kroon,et al.  Railway Rolling Stock Planning: Robustness Against Large Disruptions , 2012, Transp. Sci..

[45]  Matthias Ehrgott,et al.  Minmax robustness for multi-objective optimization problems , 2014, Eur. J. Oper. Res..

[46]  Jan Van Damme,et al.  Project scheduling under uncertainty survey and research potentials , 2002 .

[47]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[48]  Daniele Frigioni,et al.  Recoverable Robustness in Shunting and Timetabling , 2009, Robust and Online Large-Scale Optimization.

[49]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[50]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[51]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[52]  Martin W. P. Savelsbergh,et al.  Robust Optimization for Empty Repositioning Problems , 2009, Oper. Res..