A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology

A fully-integrated FMCW radar system for automotive applications operating at 77 GHz has been proposed. Utilizing a fractional- synthesizer as the FMCW generator, the transmitter linearly modulates the carrier frequency across a range of 700 MHz. The receiver together with an external baseband processor detects the distance and relative speed by conducting an FFT-based algorithm. Millimeter-wave PA and LNA are incorporated on chip, providing sufficient gain, bandwidth, and sensitivity. Fabricated in 65-nm CMOS technology, this prototype provides a maximum detectable distance of 106 meters for a mid-size car while consuming 243 mW from a 1.2-V supply.

[1]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[2]  Ali Hajimiri,et al.  A wideband 77GHz, 17.5dBm power amplifier in silicon , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[3]  Jurgen Hasch,et al.  77 GHz radar transceiver with dual integrated antenna elements , 2010, German Microwave Conference Digest of Papers.

[4]  Sanroku Tsukamoto,et al.  A 10-b 50-MS/s 820- $\mu $W SAR ADC With On-Chip Digital Calibration , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[5]  A. Mangan,et al.  De-embedding transmission line measurements for accurate modeling of IC designs , 2006, IEEE Transactions on Electron Devices.

[6]  B. Miller,et al.  A multiple modulator fractional divider , 1990, 44th Annual Symposium on Frequency Control.

[7]  Ali M. Niknejad,et al.  A Robust 24mW 60GHz Receiver in 90nm Standard CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  K. Aufinger,et al.  A 77GHz 4-channel automotive radar transceiver in SiGe , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[9]  B. Razavi,et al.  10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology , 2003, IEEE J. Solid State Circuits.

[10]  Gang Liu,et al.  A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[11]  A.A. Abidi,et al.  A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network , 2004, IEEE Journal of Solid-State Circuits.

[12]  Payam Heydari,et al.  A 22–29-GHz UWB Pulse-Radar Receiver Front-End in 0.18- $\mu{\hbox{m}}$ CMOS , 2009 .

[13]  M.-C.F. Chang,et al.  60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.

[14]  B. Razavi,et al.  A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider , 2008, IEEE Journal of Solid-State Circuits.

[15]  Martin Schneider,et al.  Automotive Radar – Status and Trends , 2005 .

[16]  A. Hajimiri,et al.  A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[17]  S. Holzwarth,et al.  24 GHz Radar Sensor integrates Patch Antenna and Frontend Module in single Multilayer LTCC Substrate , 2005 .

[18]  Sanroku Tsukamoto,et al.  A 10b 50MS/s 820µW SAR ADC with on-chip digital calibration , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[19]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[20]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[21]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[22]  Hao Li,et al.  A fully integrated 77GHz FMCW radar transmitter using a fractional-N frequency synthesizer , 2009, 2009 European Radar Conference (EuRAD).

[23]  J. Long,et al.  31-34GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[24]  Toshiya Mitomo,et al.  A 77 GHz 90 nm CMOS transceiver for FMCW radar applications , 2009, 2009 Symposium on VLSI Circuits.

[25]  B. Heydari,et al.  30 GHz CMOS Low Noise Amplifier , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[26]  D. Kasperkovitz,et al.  A wide band tuning system for fully integrated satellite receivers , 1998, Proceedings of the 23rd European Solid-State Circuits Conference.

[27]  Shyh-Jong Chung,et al.  A compact 24 GHz radar sensor for vehicle sideway-looking applications , 2005, 2005 European Microwave Conference.

[28]  B. Heydari,et al.  A 60-GHz 90-nm CMOS cascode amplifier with interstage matching , 2007, 2007 European Microwave Integrated Circuit Conference.

[29]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[30]  Ali M. Niknejad,et al.  A single-chip highly linear 2.4GHz 30dBm power amplifier in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[31]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.

[32]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[33]  Shyh-Jong Chung,et al.  A compact 24 GHz radar sensor for vehicle sideway-looking applications , 2005, European Radar Conference, 2005. EURAD 2005..

[34]  M. Rodwell,et al.  Millimeter-wave CMOS circuit design , 2005, IEEE Transactions on Microwave Theory and Techniques.

[35]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[36]  Jri Lee,et al.  A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[37]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[38]  A. Tomkins,et al.  A Passive W-Band Imager in 65nm Bulk CMOS , 2009, 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium.

[39]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.