Graphitic Petal Electrodes for All‐Solid‐State Flexible Supercapacitors

The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer-thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g−1 (based on PANI mass) and a large area-normalized specific capacitance of ≈2.6 F cm−2 (equivalent to a volumetric capacitance of ≈230 F cm−3) at a low current density of 1 A g−1 (based on PANI mass). The specific capacitances remain above 1200 F g−1 (based on PANI mass) for currents up to 100 A g−1 with correspondingly high area-normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg−1 and a maximum power density of 265 kW kg−1 at a current density of 100 A g−1. Long-term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all-solid-state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.

[1]  Jaan Leis,et al.  EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes , 2008 .

[2]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[3]  Hui Tian,et al.  Carbon nanosheets as the electrode material in supercapacitors , 2009 .

[4]  A. Vlad,et al.  Highly ordered conjugated polymer nanoarchitectures with three-dimensional structural control. , 2009, Nano letters.

[5]  N. Renganathan,et al.  Acrylamide based proton conducting polymer gel electrolyte for electric double layer capacitors , 2008 .

[6]  M. Bernard,et al.  Quantitative characterization of polyaniline films using Raman spectroscopy: II. Effects of self-doping in sulfonated polyaniline , 2006 .

[7]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[8]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[9]  Koon Gee Neoh,et al.  POLYANILINE: A POLYMER WITH MANY INTERESTING INTRINSIC REDOX STATES , 1998 .

[10]  S. Jiao,et al.  In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. , 2012, Physical chemistry chemical physics : PCCP.

[11]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[12]  Min Xiao,et al.  Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite , 2000 .

[13]  K. Rajendra Prasad,et al.  Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes , 2002 .

[14]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[15]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[16]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[17]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[18]  W. A. Adams,et al.  Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications , 1999 .

[19]  Yihong Wu,et al.  Fabrication of a Class of Nanostructured Materials Using Carbon Nanowalls as the Templates , 2002 .

[20]  T. Fisher,et al.  Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography , 2011, Nanotechnology.

[21]  H. Inoue,et al.  Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte , 2006 .

[22]  M. Bernard,et al.  Quantitative characterization of polyaniline films using Raman spectroscopy: I: Polaron lattice and bipolaron , 2006 .

[23]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[24]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[25]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[26]  Zhenan Bao,et al.  Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity , 2012, Proceedings of the National Academy of Sciences.

[27]  T. Fisher,et al.  Controlled thin graphitic petal growth on oxidized silicon , 2012 .

[28]  W. Whang,et al.  Deposition of Carbon Nanowall Flowers on Two-Dimensional Sheet for Electrochemical Capacitor Application , 2009 .

[29]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[30]  Guanghui Cheng,et al.  Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. , 2011, Nanoscale.

[31]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[32]  Jixiao Wang,et al.  Theoretical and experimental specific capacitance of polyaniline in sulfuric acid , 2009 .

[33]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[34]  P. Simon,et al.  Polythiophene-based supercapacitors , 1999 .

[35]  A. Samui,et al.  All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone] , 2010 .

[36]  K. Gong,et al.  Synthesis of polyaniline-intercalated graphite oxide by anin situ oxidative polymerization reaction , 1999 .

[37]  Liang Zhao,et al.  Polyaniline electrochromic devices with transparent graphene electrodes , 2009 .

[38]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[39]  F. Lufrano,et al.  A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors , 2007 .

[40]  Chia-Chun Chen,et al.  Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance , 2010 .

[41]  R. V. Gregory,et al.  Kinetic study of the chemical polymerization of aniline in aqueous solutions , 1992 .

[42]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[43]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[44]  Chananate Uthaisar,et al.  Edge effects on the characteristics of li diffusion in graphene. , 2010, Nano letters.

[45]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[46]  Timothy S. Fisher,et al.  MnO2-coated graphitic petals for supercapacitor electrodes , 2013 .

[47]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[48]  Chi-Chang Hu,et al.  Capacitive and textural characteristics of polyaniline-platinum composite films , 2002 .

[49]  G. Chen,et al.  Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on 'Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties'. , 2011, Chemical communications.

[50]  T. Fisher,et al.  Contiguous petal-like carbon nanosheet outgrowths from graphite fibers by plasma CVD. , 2010, ACS applied materials & interfaces.

[51]  Andreas Züttel,et al.  Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials , 2003 .

[52]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[53]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[54]  Vinay Gupta,et al.  Electrochemically Deposited Polyaniline Nanowire’s Network A High-Performance Electrode Material for Redox Supercapacitor , 2005 .