Nonlinear dynamics of a SMA large-scale space structure

Large-scale structures are of special interest of aerospace applications, especially the ones involving smart materials. This paper deals with an archetypal system with two degrees of freedom that resembles the use of SMA elements as vibration isolation systems on a sparse aperture satellite array. The system has SMA elements in two perpendicular directions connected to a mass. Each SMA element is connected to a base structure. Imperfections are represented by establishing a comparison between two different systems: ideal and perturbed configuration system. The perturbed configuration is characterized by a situation where all SMA elements are in a stress-free state. The thermomechanical behavior of SMA elements is described by a constitutive model with internal constrains. Numerical tests of this system are of concern showing its general dynamical behavior. Periodic and chaotic motions are investigated showing the complex behaviors of this kind of system. The effect of imperfection in system dynamics is also discussed. Keywords: shape memory alloys, smart structures, aerospace structures, nonlinear dynamics

[1]  Jeong-Hoi Koo,et al.  Improving robustness of tuned vibration absorbers using shape memory alloys , 2005 .

[2]  W. Lacarbonara,et al.  Nonclassical Responses of Oscillators with Hysteresis , 2003 .

[3]  Marcelo A. Savi,et al.  On the Fremond’s constitutive model for shape memory alloys , 2004 .

[4]  Marcelo A. Savi,et al.  A three-dimensional constitutive model for shape memory alloys , 2010 .

[5]  Marcelo A. Savi,et al.  Tensile-compressive asymmetry influence on shape memory alloy system dynamics , 2008 .

[6]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[7]  Davide Bernardini,et al.  Chaos Robustness and Strength in thermomechanical Shape Memory oscillators Part I: a Predictive Theoretical Framework for the Pseudoelastic Behavior , 2011, Int. J. Bifurc. Chaos.

[8]  Marcelo A. Savi,et al.  Nonlinear dynamics of a nonsmooth shape memory alloy oscillator , 2009 .

[9]  Dimitris C. Lagoudas,et al.  Adaptive Control of Shape Memory Alloy Actuators for Underwater Biomimetic Applications , 2000 .

[10]  Marcelo A. Savi,et al.  Experimental and numerical investigations of shape memory alloy helical springs , 2010 .

[11]  Fabrizio Vestroni,et al.  Nonlinear thermomechanical oscillations of shape-memory devices , 2004 .

[12]  Marcelo A. Savi,et al.  An overview of constitutive models for shape memory alloys , 2006 .

[13]  Marcelo A. Savi,et al.  Chaos in a shape memory two-bar truss , 2002 .

[14]  Z. Bažant,et al.  Stability Of Structures , 1991 .

[15]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[16]  Marcelo A. Savi,et al.  A constitutive model for shape memory alloys considering tensile¿compressive asymmetry and plasticity , 2005 .

[17]  Antonio Concilio,et al.  A shape memory alloys based tuneable dynamic vibration absorber for vibration tonal control , 2010 .

[18]  Emiliano Rustighi,et al.  A shape memory alloy adaptive tuned vibration absorber: design and implementation , 2005 .

[19]  Luciano G. Machado Shape memory alloys for vibration isolation and damping , 2007 .

[20]  Marcelo Amorim Savi,et al.  Chaos and Hyperchaos in Shape Memory Systems , 2002, Int. J. Bifurc. Chaos.

[21]  Theodoro A. Netto,et al.  A Phenomenological Description of the Thermomechanical Coupling and the Rate-dependent Behavior of Shape Memory Alloys , 2009 .

[22]  Davide Bernardini,et al.  Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators , 2005 .

[23]  Victor Birman,et al.  Shape Memory Elastic Foundation and Supports for Passive Vibration Control of Composite Plates , 2008 .

[24]  Dimitris C. Lagoudas,et al.  Lyapunov exponents estimation for hysteretic systems , 2009 .

[25]  L. G. Machado,et al.  Bifurcations and Crises in a Shape Memory Oscillator , 2004 .

[26]  Robert J. Bernhard,et al.  Nonlinear control of a shape memory alloy adaptive tuned vibration absorber , 2005 .

[27]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[28]  Tadashige Ikeda,et al.  The active tuning of a shape memory alloy pseudoelastic property , 2004 .

[29]  Keith K. Denoyer,et al.  Advanced smart structures flight experiments for precision spacecraft , 2000 .

[30]  Marcelo A. Savi,et al.  Nonlinear dynamics and chaos in a pseudoelastic two-bar truss , 2010 .

[31]  Marcelo A. Savi,et al.  Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model , 2002 .

[32]  Davide Bernardini,et al.  Chaos Robustness and Strength in thermomechanical Shape Memory oscillators Part II: numerical and Theoretical Evaluation , 2011, Int. J. Bifurc. Chaos.

[33]  Peter M. Pinsky,et al.  Operator split methods for the numerical solution of the elastoplastic dynamic problem , 1983 .

[34]  Marcelo A. Savi,et al.  Nonlinear dynamics and chaos in coupled shape memory oscillators , 2003 .

[35]  Elena Sitnikova,et al.  Vibration reduction of the impact system by an SMA restraint: numerical studies , 2010 .

[36]  Marcelo A. Savi,et al.  Describing internal subloops due to incomplete phase transformations in shape memory alloys , 2005 .