Multi-objective calibration of the physically based, spatially distributed SHETRAN hydrological model

Physically based, spatially distributed hydrological models have mostly been calibrated manually; a few were calibrated automatically but without full consideration of conflicting multi-objectives. Here, we successfully applied the non-dominated sorting genetic algorithm II (NSGA-II) and its two variants, namely the reference point-based R-NSGA-II and the extension ER-NSGA-II, to multi-objective, automatic calibration of the SHETRAN hydrological model. Moreover, we demonstrated the possibility of speeding up the calibration process by adjusting the recombination and mutation parameters of the optimization algorithms. The simulated binary crossover and polynomial mutation were used with respective probabilities of 0.9 and 0.1, and crossover and mutation distribution indices ( ηc , ηm ) with values of (0.5, 0.5), (2.0, 0.5) and (20., 20.). The results indicate that the use of smaller ( ηc , ηm ) speeded up the optimization process of SHETRAN calibration, especially during the initial stage, for all three algorithms; however, the use of the R-NSGA-II and ER-NSGA-II did not provide a more efficient optimization compared to the NSGA-II. The broad search of the algorithms, enabled by the generation of diversified solutions due to the use of small ( ηc , ηm ), contributed to the improved efficiency. Finally, we successfully validated the optimal solutions for both the basin outlet and the internal gauging stations.

[1]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[2]  E. Reis,et al.  Floods in southern Portugal: their physical and human causes, impacts and human response , 2002 .

[3]  J. Refsgaard Parameterisation, calibration and validation of distributed hydrological models , 1997 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  J. Corte-Real,et al.  WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION , 2014, Journal of Urban and Environmental Engineering.

[6]  Dan Rosbjerg,et al.  Assessing climate change impacts on river flows and environmental flow requirements at catchment scale , 2010 .

[7]  Chris Kilsby,et al.  Hydrological impacts of climate change on the Tejo and Guadiana Rivers , 2007 .

[8]  VoinovAlexey,et al.  Software, data and modelling news , 2012 .

[9]  Joseph R. Kasprzyk,et al.  Evolutionary multiobjective optimization in water resources: The past, present, and future , 2012 .

[10]  João Corte-Real,et al.  Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE , 2013, Water Resources Management.

[11]  Avi Ostfeld,et al.  State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management , 2010 .

[12]  Z. Kalantari,et al.  Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. , 2014, The Science of the total environment.

[13]  John Ewen,et al.  SHETRAN: Distributed River Basin Flow and Transport Modeling System , 2000 .

[14]  Celso Augusto Guimarães Santos,et al.  Application of an optimization technique to a physically based erosion model , 2003 .

[15]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[16]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[17]  J. Bathurst,et al.  Modelling the impacts of climate and land-use change on basin hydrology and soil erosion in Mediterranean Europe. , 1996 .

[18]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[19]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[20]  Kalyanmoy Deb,et al.  Analysing mutation schemes for real-parameter genetic algorithms , 2014, Int. J. Artif. Intell. Soft Comput..

[21]  Philip James,et al.  Graphical user interface for rapid set-up of SHETRAN physically-based river catchment model , 2010, Environ. Model. Softw..

[22]  Yong Tang,et al.  Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications , 2007 .

[23]  S. Brouyère,et al.  Assessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty , 2014 .

[24]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[25]  J. Corte-Real,et al.  Water Resources Impact Assessment Under Climate Change Scenarios in Mediterranean Watersheds , 2015, Water Resources Management.

[26]  Hyeonjun Kim,et al.  Assessing the impacts of land use changes on watershed hydrology using MIKE SHE , 2009 .

[27]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[28]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[29]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques , 2007 .

[30]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO '06.

[31]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[32]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[33]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[34]  Kalyanmoy Deb,et al.  Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls , 2012, 2012 IEEE Congress on Evolutionary Computation.

[35]  J. Refsgaard,et al.  Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations , 2014 .

[36]  Andrea Viezzoli,et al.  Nitrate reduction in geologically heterogeneous catchments--a framework for assessing the scale of predictive capability of hydrological models. , 2014, The Science of the total environment.

[37]  James C. Bathurst,et al.  The effect of forest cover on peak flow and sediment discharge—an integrated field and modelling study in central–southern Chile , 2011 .

[38]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[39]  John Ewen,et al.  Modelling nitrate transport in the Slapton Wood catchment using SHETRAN , 2000 .

[40]  M. Waterloo,et al.  A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution , 2013 .

[41]  Kalyanmoy Deb,et al.  Self-adaptive simulated binary crossover for real-parameter optimization , 2007, GECCO '07.

[42]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[43]  J. Bathurst Predicting Impacts of Land Use and Climate Change on Erosion and Sediment Yield in River Basins Using SHETRAN , 2011 .

[44]  Mahyar Shafii,et al.  Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm , 2009 .

[45]  Alain Dassargues,et al.  Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios , 2011 .

[46]  J. Bathurst,et al.  Modelling large basin hydrology and sediment yield with sparse data: The Agri Basin, southern Italy , 2002 .

[47]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[48]  A. Hope,et al.  Predicting streamflow response to fire-induced landcover change: implications of parameter uncertainty in the MIKE SHE model. , 2007, Journal of environmental management.

[49]  P. Freire,et al.  Application of a simulated annealing optimization to a physically based erosion model. , 2012, Water science and technology : a journal of the International Association on Water Pollution Research.

[50]  Xuesong Zhang,et al.  On the use of multi‐algorithm, genetically adaptive multi‐objective method for multi‐site calibration of the SWAT model , 2010 .

[51]  J. Thompson Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections , 2012 .

[52]  Jens Christian Refsgaard,et al.  Effect of grid size on effective parameters and model performance of the MIKE‐SHE code , 2002 .

[53]  W. Rawls,et al.  Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions , 2006 .

[54]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[55]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[56]  É. Malézieux,et al.  Pesticide transfer models in crop and watershed systems: a review , 2013, Agronomy for Sustainable Development.

[57]  Yong Tang ADVANCING HYDROLOGIC MODEL EVALUATION AND IDENTIFICATION USING MULTIOBJECTIVE CALIBRATION, SENSITIVITY ANALYSIS, AND PARALLEL COMPUTATION , 2007 .